Transférer les fichiers vers 'Code_Final_loc180deg'

Le fichier Localisation180.cpp est le programme C++ permettant la localisation du son pour ROS. Le fichier CMakeLists.txt est celui qui est nécessaire pour la compilation avec catkin_make. Pour les utiliser, se référer à la notice : https://gitcdr.univ-ubs.fr/ericsenn/localisation_audio/src/branch/master/Creation_package_v1.pdf
This commit is contained in:
QLeblanc 2020-06-23 10:14:35 +02:00
parent 2f9971b464
commit ddcb51e655
2 changed files with 484 additions and 0 deletions

View file

@ -0,0 +1,214 @@
cmake_minimum_required(VERSION 3.0.2)
project(localisation CXX)
## Compile as C++11, supported in ROS Kinetic and newer
# add_compile_options(-std=c++11)
## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTS
roscpp
)
find_package(PkgConfig)
pkg_check_modules(ALSA alsa REQUIRED)
## System dependencies are found with CMake's conventions
# find_package(Boost REQUIRED COMPONENTS system)
## Uncomment this if the package has a setup.py. This macro ensures
## modules and global scripts declared therein get installed
## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html
# catkin_python_setup()
################################################
## Declare ROS messages, services and actions ##
################################################
## To declare and build messages, services or actions from within this
## package, follow these steps:
## * Let MSG_DEP_SET be the set of packages whose message types you use in
## your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
## * In the file package.xml:
## * add a build_depend tag for "message_generation"
## * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET
## * If MSG_DEP_SET isn't empty the following dependency has been pulled in
## but can be declared for certainty nonetheless:
## * add a exec_depend tag for "message_runtime"
## * In this file (CMakeLists.txt):
## * add "message_generation" and every package in MSG_DEP_SET to
## find_package(catkin REQUIRED COMPONENTS ...)
## * add "message_runtime" and every package in MSG_DEP_SET to
## catkin_package(CATKIN_DEPENDS ...)
## * uncomment the add_*_files sections below as needed
## and list every .msg/.srv/.action file to be processed
## * uncomment the generate_messages entry below
## * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)
## Generate messages in the 'msg' folder
# add_message_files(
# FILES
# Message1.msg
# Message2.msg
# )
## Generate services in the 'srv' folder
# add_service_files(
# FILES
# Service1.srv
# Service2.srv
# )
## Generate actions in the 'action' folder
# add_action_files(
# FILES
# Action1.action
# Action2.action
# )
## Generate added messages and services with any dependencies listed here
# generate_messages(
# DEPENDENCIES
# std_msgs # Or other packages containing msgs
# )
################################################
## Declare ROS dynamic reconfigure parameters ##
################################################
## To declare and build dynamic reconfigure parameters within this
## package, follow these steps:
## * In the file package.xml:
## * add a build_depend and a exec_depend tag for "dynamic_reconfigure"
## * In this file (CMakeLists.txt):
## * add "dynamic_reconfigure" to
## find_package(catkin REQUIRED COMPONENTS ...)
## * uncomment the "generate_dynamic_reconfigure_options" section below
## and list every .cfg file to be processed
## Generate dynamic reconfigure parameters in the 'cfg' folder
# generate_dynamic_reconfigure_options(
# cfg/DynReconf1.cfg
# cfg/DynReconf2.cfg
# )
###################################
## catkin specific configuration ##
###################################
## The catkin_package macro generates cmake config files for your package
## Declare things to be passed to dependent projects
## INCLUDE_DIRS: uncomment this if your package contains header files
## LIBRARIES: libraries you create in this project that dependent projects also need
## CATKIN_DEPENDS: catkin_packages dependent projects also need
## DEPENDS: system dependencies of this project that dependent projects also need
catkin_package(
# INCLUDE_DIRS include
# LIBRARIES localisation
# CATKIN_DEPENDS roscpp
# DEPENDS system_lib
)
###########
## Build ##
###########
## Specify additional locations of header files
## Your package locations should be listed before other locations
include_directories(
# include
${catkin_INCLUDE_DIRS}
${ALSA_LIBRARIES}
${ALSA_CFLAGS_OTHER}
${ALSA_INCLUDE_DIRS}
)
## Declare a C++ library
# add_library(${PROJECT_NAME}
# src/${PROJECT_NAME}/localisation.cpp
# )
## Add cmake target dependencies of the library
## as an example, code may need to be generated before libraries
## either from message generation or dynamic reconfigure
# add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
## Declare a C++ executable
## With catkin_make all packages are built within a single CMake context
## The recommended prefix ensures that target names across packages don't collide
add_executable(${localisation}localisation src/Localisation180.cpp)
target_link_libraries (localisation ${ALSA_LIBRARIES})
target_compile_options(localisation PUBLIC ${ALSA_CFLAGS_OTHER})
target_include_directories(localisation PUBLIC ${ALSA_INCLUDE_DIRS})
target_link_libraries (localisation ${catkin_LIBRARIES})
## Rename C++ executable without prefix
## The above recommended prefix causes long target names, the following renames the
## target back to the shorter version for ease of user use
## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node"
# set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "")
## Add cmake target dependencies of the executable
## same as for the library above
# add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
## Specify libraries to link a library or executable target against
# target_link_libraries(${PROJECT_NAME}_node
# ${catkin_LIBRARIES}
# )
#############
## Install ##
#############
# all install targets should use catkin DESTINATION variables
# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html
## Mark executable scripts (Python etc.) for installation
## in contrast to setup.py, you can choose the destination
# catkin_install_python(PROGRAMS
# scripts/my_python_script
# DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )
## Mark executables for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_executables.html
# install(TARGETS ${PROJECT_NAME}_node
# RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )
## Mark libraries for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_libraries.html
# install(TARGETS ${PROJECT_NAME}
# ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
# LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
# RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION}
# )
## Mark cpp header files for installation
# install(DIRECTORY include/${PROJECT_NAME}/
# DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
# FILES_MATCHING PATTERN "*.h"
# PATTERN ".svn" EXCLUDE
# )
## Mark other files for installation (e.g. launch and bag files, etc.)
# install(FILES
# # myfile1
# # myfile2
# DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
# )
#############
## Testing ##
#############
## Add gtest based cpp test target and link libraries
# catkin_add_gtest(${PROJECT_NAME}-test test/test_localisation.cpp)
# if(TARGET ${PROJECT_NAME}-test)
# target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME})
# endif()
## Add folders to be run by python nosetests
# catkin_add_nosetests(test)

View file

@ -0,0 +1,270 @@
#include <iostream>
using namespace std;
// #include <ros/ros.h>
#include "/opt/ros/kinetic/include/ros/ros.h"
#include <std_msgs/Float32.h>
#include <geometry_msgs/Twist.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include <alsa/asoundlib.h>
#include "/usr/include/alsa/asoundlib.h"
#include <ros/publisher.h>
//#include "/opt/ros/kinetic/share/std_msgs/msg/Float64.msg"
//#define SAMPLE_TYPE float
//#define SAMPLE_TYPE_ALSA SND_PCM_FORMAT_FLOAT_LE
#define SAMPLE_TYPE short //sample type = type d'echantillon
#define SAMPLE_TYPE_ALSA SND_PCM_FORMAT_S16_LE
//float lin[3]= [2.0,0.0,0.0] ;
//float th[3]= [0.0,0.0,0.0] ;
float th;
/**
* classe permettant de calculer la moyenne glissante du signal
*/
class MoyenneGlissante {
int _nbDeValeursPrMoy;
int _nbDeValeurs;
float _mean;
public:
MoyenneGlissante(int nbDeValeursPrMoy) {
_nbDeValeursPrMoy = nbDeValeursPrMoy;
_mean = 0;
_nbDeValeurs = 0;
}
void nvelleValeur(SAMPLE_TYPE v) {
if (_nbDeValeurs < _nbDeValeursPrMoy)
_nbDeValeurs++;
_mean = ((_mean * (_nbDeValeurs - 1)) + v) / (float)_nbDeValeurs;
}
SAMPLE_TYPE getMean() {
return (SAMPLE_TYPE) _mean;
}
};
/**
* Cette classe calcule la direction du son entendu
*
*
* Elle utilise 2 microphones et calcule la différence de temps d'arrivée des sons entre eux pour
* estimer la localisation de la source sonore.
*/
class Localisation {
/**
* Décalage maximum entre le micro droit et gauche en nombre d'échantillons.
* Cela dépend généralement de la fréquence d'échantillonnage et de la distance entre
* microphones
*/
static const int _nbEchantillonsDiffMax = 13; //difference max du nombre d'echantillons
/**
* Taille du tampon sur laquelle nous allons essayer de localiser le son.
* Ceci est un certain nombre d'échantillons, et dépend de la fréquence d'échantillonnage et de la vitesse de
* changement de loc son que nous voulons détecter. Des valeurs plus faibles signifient le calcul du son
* se fait plus souvent, mais la précision est assez faible car nous calculons sur une très petite tranche de
* du son.
*/
static const int _TailleTampon = 4096;
/**
* Prenez un point pour la localisation du son est Niveau> 105% du Niveau moyen. Cela permet de calculer la
* localisation du son uniquement pour les sons "significatifs", pas le bruit de fond.
*/
static constexpr float _NiveauSonMin = 1.1f; //f de 1.05f signifie :float constant with value of 1.05
/**
* sound speed in meters per seconds
*/
static constexpr float _Vson = 344;
/**
* sound sampling rate in Hz
*/
unsigned int _TauxEchantillonnageSon;
/**
* Distance between microphones in meters
*/
static constexpr float _DistanceMic = 0.05f;//5 cm de distance entre les deux microphones
/** An utility to compute the running average of sound power */
MoyenneGlissante* _MoyNivSonore;
/** ALSA sound input handle */
snd_pcm_t* _capture_handle;
/** sound samples input buffer */
SAMPLE_TYPE _TamponDroit[_TailleTampon];
SAMPLE_TYPE _TamponGauche[_TailleTampon];
public:
Localisation() {
_MoyNivSonore = new MoyenneGlissante(50);
_TauxEchantillonnageSon = 44100;
// sampling: 2 chanels, 44 KHz, 16 bits.
int err;
snd_pcm_hw_params_t* hw_params;
// ideally use "hw:0,0" for embedded, to limit processing. But check if card support our needs...
const char* CarteSon = "plughw:0,0";
if ((err = snd_pcm_open(&_capture_handle, CarteSon, SND_PCM_STREAM_CAPTURE, 0)) < 0) {
fprintf(stderr, "Impossible d'ouvrir le peripherique audio %s (%s)\n", CarteSon,snd_strerror(err));
exit(1);
}
if ((err = snd_pcm_hw_params_malloc(&hw_params)) < 0) {
fprintf(stderr, "Impossible d'allouer la structure des paramètres matériels (%s)\n",snd_strerror(err));
exit(1);
}
if ((err = snd_pcm_hw_params_any(_capture_handle, hw_params)) < 0) {
fprintf(stderr,"Impossible d'initialiser la structure des paramètres matériels (%s)\n",snd_strerror(err));
exit(1);
}
if ((err = snd_pcm_hw_params_set_access(_capture_handle, hw_params,SND_PCM_ACCESS_RW_NONINTERLEAVED)) < 0) {
fprintf(stderr, "Impossible de definir le type d'acces (%s)\n", snd_strerror(err));
exit(1);
}
if ((err = snd_pcm_hw_params_set_format(_capture_handle, hw_params,SAMPLE_TYPE_ALSA)) < 0) {
fprintf(stderr, "Impossible de definir le format d'echantillonnage (%s)\n",snd_strerror(err));
exit(1);
}
if ((err = snd_pcm_hw_params_set_rate_near(_capture_handle, hw_params,&_TauxEchantillonnageSon, 0)) < 0) {
fprintf(stderr, "Impossible de definir le taux d'echantillonnage (%s)\n", snd_strerror(err));
exit(1);
}
if ((err = snd_pcm_hw_params_set_channels(_capture_handle, hw_params, 2))< 0) {
fprintf(stderr, "Impossible de definir le nombre de canaux (%s)\n", snd_strerror(err));
exit(1);
}
if ((err = snd_pcm_hw_params(_capture_handle, hw_params)) < 0) {
fprintf(stderr, "Impossible de definir les parametres (%s)\n", snd_strerror(err));
exit(1);
}
snd_pcm_hw_params_free(hw_params);
if ((err = snd_pcm_prepare(_capture_handle)) < 0) {
fprintf(stderr, "Impossible de preparer l'interface audio pour utilisation (%s)\n",snd_strerror(err));
exit(1);
}
}
/** Clean exit */
~Localisation() {
snd_pcm_close(_capture_handle);
delete _MoyNivSonore;
}
/**
* Boucle principale: lit un tampon, calcule la localisation de la source sonore, fait une itération.
*/
void run() {
//while (true) {
TraitementSonsSuivants();
//}
}
private:
/**
* C'est le cœur de la localisation de la source sonore: il prend les sons échantillonnés
* Droit / Gauche, et calcule leurs différences tout en retardant de plus en plus un canal.<br/>
* => le retard pour lequel la différence est minime est le vrai retard
* entre les sons Droit / Gauche, dont on peut déduire la source sonore
* localisation
*/
void TraitementSonsSuivants() {
SAMPLE_TYPE* bufs[2];
bufs[0] = _TamponDroit;
bufs[1] = _TamponGauche;
int err;
if ((err = snd_pcm_readn(_capture_handle, (void**) bufs, _TailleTampon))!= _TailleTampon) {
fprintf(stderr, "Echec de la lecture de l'interface audio (%s)\n",snd_strerror(err));
exit(1);
}
// compute the sound level (i.e. "loudness" of the sound):
SAMPLE_TYPE Niveau = CalculNiv(_TamponDroit, _TamponGauche);
// update the average sound level with this new measure:
_MoyNivSonore->nvelleValeur(Niveau);
// relative sound level of this sample compared to average:
float NivRelatif = (float) Niveau / (float) _MoyNivSonore->getMean();
//cout << "level " << level << ", relative " << NivRelatif << endl;
int minDiff = INT_MAX;
int minDiffTime = -1;
// glisse sur l'axe du temps pour trouver la différence sonore minimum entre les microphones Droit et Gauche
for (int t = -_nbEchantillonsDiffMax; t < _nbEchantillonsDiffMax; t++) {
// calcule la somme des différences pour simuler une mesure de corrélation croisée:
int diff = 0;
for (int i = _nbEchantillonsDiffMax; i < _TailleTampon - _nbEchantillonsDiffMax - 1; i++) {
diff += abs(_TamponGauche[i] - _TamponDroit[i + t]);
}
if (diff < minDiff) {
minDiff = diff;
minDiffTime = t;
}
}
// Si le son est assez fort et pas extrême (= ce qui entraine généralement de fausses
// mesures), alors on le dessine:
if ((NivRelatif > _NiveauSonMin) && (minDiffTime > -_nbEchantillonsDiffMax) && (minDiffTime < _nbEchantillonsDiffMax)) {
// computation of angle depending on diff time, sampling rates,
// and geometry
float angle = -(float) asin((minDiffTime * _Vson) / (_TauxEchantillonnageSon* _DistanceMic));
if (angle<2 && angle >-2){ //Empeche de renvoyer la valeur -nan lorsque le son est jugé trop faible.
cout << angle << ";" << NivRelatif << endl;
th = angle;
}
}
}
/**
* Calcule du niveau sonore moyen (la puissance) pour les canaux gauche et droit.
*/
SAMPLE_TYPE CalculNiv(SAMPLE_TYPE Droit[], SAMPLE_TYPE Gauche[]) {
float Niveau = 0;
for (int i = 0; i < _TailleTampon; i++) {
float s = (Gauche[i] + Droit[i]) / 2;
Niveau += (s * s);
}
Niveau /= _TailleTampon;
Niveau = sqrt(Niveau);
return (SAMPLE_TYPE) Niveau;
}
};
int main(int argc, char *argv[]) {
ros::init(argc, argv, "localisation_v2");
ros::NodeHandle nh;
ros::Publisher cmd_velo = nh.advertise<geometry_msgs::Twist>("/turtle1/cmd_vel", 1000);
geometry_msgs::Twist theta;
Localisation soundLoc;
while (ros::ok()){
soundLoc.run();
theta.angular.z = th;
//theta.linear.x = 0.1;
cmd_velo.publish(theta);
}
exit(0);
}