
Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods1

Richard Barrett2,Michael Berry3, Tony F. Chan4,

James Demmel5, June M. Donato6, Jack Dongarra3 ;6,

Victor Eijkhout4, Roldan Pozo7 Charles Romine6,

and Henk Van der Vorst8

1This work was supported in part by DARPA and ARO under contract number DAAL03-
91-C-0047, the National Science Foundation Science and Technology Center Cooperative
Agreement No. CCR-8809615, the Applied Mathematical Sciences subprogram of the O�ce
of Energy Research, U.S. Department of Energy, under Contract DE-AC05-84OR21400, and
the Stichting Nationale Computer Faciliteit (NCF) by Grant CRG 92.03.

2Los Alamos National Laboratory, Los Alamos, NM 87544.
3Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301.
4Applied Mathematics Department, University of California, Los Angeles, CA 90024-1555.
5Computer Science Division and Mathematics Department, University of California,

Berkeley, CA 94720.
6Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831-

6367.
7National Institute of Standards and Technology, Gaithersburg, MD, 20899
8Department of Mathematics, Utrecht University, Utrecht, the Netherlands.

i

This book is also available in Postscript from over the Internet.
To retrieve the postscript �le you can use one of the following methods:

1. anonymous ftp to www.netlib.org
cd templates
get templates.ps
quit

2. from any machine on the Internet type:
rcp anon@www.netlib.org:templates/templates.ps templates.ps

3. send email to netlib@ornl.gov and in the message type:
send templates.ps from templates

The url for this book is http://www.netlib.org/templates/Templates.html .
A bibtex reference for this book follows:
@BOOKftemplates, AUTHOR = fR. Barrett and M. Berry and T. F. Chan and J.

Demmel and J. Donato and J. Dongarra and V. Eijkhout and R. Pozo and C. Romine,
and H. Van der Vorst g, TITLE = fTemplates for the Solution of Linear Systems:
Building Blocks for Iterative Methodsg, PUBLISHER = fSIAMg, YEAR = f1994g,
ADDRESS = fPhiladelphia, PAg g

ii

How to Use This Book

We have divided this book into �ve main chapters. Chapter 1 gives the motivation for
this book and the use of templates.

Chapter 2 describes stationary and nonstationary iterative methods. In this chap-
ter we present both historical development and state-of-the-art methods for solving
some of the most challenging computational problems facing researchers.

Chapter 3 focuses on preconditioners. Many iterative methods depend in part on
preconditioners to improve performance and ensure fast convergence.

Chapter 4 provides a glimpse of issues related to the use of iterative methods. This
chapter, like the preceding, is especially recommended for the experienced user who
wishes to have further guidelines for tailoring a speci�c code to a particular machine.
It includes information on complex systems, stopping criteria, data storage formats,
and parallelism.

Chapter 5 includes overviews of related topics such as the close connection between
the Lanczos algorithm and the Conjugate Gradient algorithm, block iterative methods,
red/black orderings, domain decomposition methods, multigrid-likemethods, and row-
projection schemes.

The Appendices contain information on how the templates and BLAS software can
be obtained. A glossary of important terms used in the book is also provided.

The �eld of iterative methods for solving systems of linear equations is in constant
ux, with new methods and approaches continually being created, modi�ed, tuned, and
some eventually discarded. We expect the material in this book to undergo changes
from time to time as some of these new approaches mature and become the state-of-
the-art. Therefore, we plan to update the material included in this book periodically
for future editions. We welcome your comments and criticisms of this work to help
us in that updating process. Please send your comments and questions by email to
templates@cs.utk.edu.

iii

List of Symbols
A; : : : ; Z matrices
a; : : : ; z vectors
�; �; : : : ; ! scalars
AT matrix transpose
AH conjugate transpose (Hermitian) of A
A�1 matrix inverse
A�T the inverse of AT

ai;j matrix element
a:;j jth matrix column
Ai;j matrix subblock
ai vector element
ux; uxx �rst, second derivative with respect to x
(x; y), xTy vector dot product (inner product)

x
(i)
j jth component of vector x in the ith iteration

diag(A) diagonal of matrix A
diag(�; � : : :) diagonal matrix constructed from scalars �; � : : :
span(a; b : : :) spanning space of vectors a; b : : :
R set of real numbers
Rn real n-space
jjxjj2 2-norm
jjxjjp p-norm
jjxjjA the \A-norm", de�ned as (Ax; x)1=2

�max(A); �min(A) eigenvalues of A with maximum (resp. minimum) modulus
�max(A); �min(A) largest and smallest singular values of A
�2(A) spectral condition number of matrix A
L linear operator
� complex conjugate of the scalar �
maxfSg maximum value in set S
minfSg minimum value in set SP

summation
O(�) \big-oh" asymptotic bound

iv

v

Conventions Used in this Book

D diagonal matrix
L lower triangular matrix
U upper triangular matrix
Q orthogonal matrix
M preconditioner
I; In�n n� n identity matrix
x̂ typically, the exact solution to Ax = b
h discretization mesh width

vi

Author's A�liations

Richard Barrett
Los Alamos National Laboratory

Michael Berry
University of Tennessee, Knoxville

Tony Chan
University of California, Los Angeles

James Demmel
University of California, Berkeley

June Donato
Oak Ridge National Laboratory

Jack Dongarra
University of Tennessee, Knoxville
and Oak Ridge National Laboratory

Victor Eijkhout
University of California, Los Angeles

Roldan Pozo
National Institute of Standards and Technology

Charles Romine
Oak Ridge National Laboratory

Henk van der Vorst
Utrecht University, the Netherlands

vii

viii

Acknowledgments

The authors gratefully acknowledge the valuable assistance of many people who com-
mented on preliminary drafts of this book. In particular, we thank Loyce Adams, Bill
Coughran, Matthew Fishler, Peter Forsyth, Roland Freund, Gene Golub, Eric Grosse,
Mark Jones, David Kincaid, Steve Lee, Tarek Mathew, No�el Nachtigal, Jim Ortega,
and David Young for their insightful comments. We also thank Geo�rey Fox for initial
discussions on the concept of templates, and Karin Remington for designing the front
cover.

This work was supported in part by DARPA and ARO under contract number
DAAL03-91-C-0047, the National Science Foundation Science and Technology Cen-
ter Cooperative Agreement No. CCR-8809615, the Applied Mathematical Sciences
subprogram of the O�ce of Energy Research, U.S. Department of Energy, under Con-
tract DE-AC05-84OR21400, and the Stichting Nationale Computer Faciliteit (NCF)
by Grant CRG 92.03.

ix

x

Contents

List of Symbols iv

List of Figures xiii

1 Introduction 1
1.1 Why Use Templates? : 2
1.2 What Methods Are Covered? : 3

2 Iterative Methods 5
2.1 Overview of the Methods : 5
2.2 Stationary Iterative Methods : 7

2.2.1 The Jacobi Method : 8
2.2.2 The Gauss-Seidel Method : 9
2.2.3 The Successive Overrelaxation Method : : : : : : : : : : : : : : 10
2.2.4 The Symmetric Successive Overrelaxation Method : : : : : : : 12
2.2.5 Notes and References : 12

2.3 Nonstationary Iterative Methods : 14
2.3.1 Conjugate Gradient Method (CG) : : : : : : : : : : : : : : : : 14
2.3.2 MINRES and SYMMLQ : 17
2.3.3 CG on the Normal Equations, CGNE and CGNR : : : : : : : : 18
2.3.4 Generalized Minimal Residual (GMRES) : : : : : : : : : : : : 19
2.3.5 BiConjugate Gradient (BiCG) : : : : : : : : : : : : : : : : : : 21
2.3.6 Quasi-Minimal Residual (QMR) : : : : : : : : : : : : : : : : : 23
2.3.7 Conjugate Gradient Squared Method (CGS) : : : : : : : : : : : 25
2.3.8 BiConjugate Gradient Stabilized (Bi-CGSTAB) : : : : : : : : : 27
2.3.9 Chebyshev Iteration : 28

2.4 Computational Aspects of the Methods : : : : : : : : : : : : : : : : : 30
2.5 A short history of Krylov methods : 34
2.6 Survey of recent Krylov methods : 35

3 Preconditioners 39
3.1 The why and how : 39

3.1.1 Cost trade-o� : 39
3.1.2 Left and right preconditioning : : : : : : : : : : : : : : : : : : 40

3.2 Jacobi Preconditioning : 41
3.2.1 Block Jacobi Methods : 41

xi

xii CONTENTS

3.2.2 Discussion : 42
3.3 SSOR preconditioning : 42
3.4 Incomplete Factorization Preconditioners : : : : : : : : : : : : : : : : 43

3.4.1 Creating an incomplete factorization : : : : : : : : : : : : : : : 43
3.4.2 Point incomplete factorizations : : : : : : : : : : : : : : : : : : 44
3.4.3 Block factorization methods : 49
3.4.4 Blocking over systems of partial di�erential equations : : : : : 52
3.4.5 Incomplete LQ factorizations : : : : : : : : : : : : : : : : : : : 52

3.5 Polynomial preconditioners : 52
3.6 Other preconditioners : 53

3.6.1 Preconditioning by the symmetric part : : : : : : : : : : : : : : 53
3.6.2 The use of fast solvers : 54
3.6.3 Alternating Direction Implicit methods : : : : : : : : : : : : : 54

4 Related Issues 57
4.1 Complex Systems : 57
4.2 Stopping Criteria : 57

4.2.1 More Details about Stopping Criteria : : : : : : : : : : : : : : 58
4.2.2 When r(i) or kr(i)k is not readily available : : : : : : : : : : : : 61
4.2.3 Estimating kA�1k : 62
4.2.4 Stopping when progress is no longer being made : : : : : : : : 62
4.2.5 Accounting for oating point errors : : : : : : : : : : : : : : : : 63

4.3 Data Structures : 63
4.3.1 Survey of Sparse Matrix Storage Formats : : : : : : : : : : : : 64
4.3.2 Matrix vector products : 68
4.3.3 Sparse Incomplete Factorizations : : : : : : : : : : : : : : : : : 71

4.4 Parallelism : 76
4.4.1 Inner products : 76
4.4.2 Vector updates : 78
4.4.3 Matrix-vector products : 78
4.4.4 Preconditioning : 79
4.4.5 Wavefronts in the Gauss-Seidel and Conjugate Gradient methods 80
4.4.6 Blocked operations in the GMRES method : : : : : : : : : : : 80

5 Remaining topics 83
5.1 The Lanczos Connection : 83
5.2 Block and s-step Iterative Methods : 84
5.3 Reduced System Preconditioning : 85
5.4 Domain Decomposition Methods : 86

5.4.1 Overlapping Subdomain Methods : : : : : : : : : : : : : : : : : 87
5.4.2 Non-overlapping Subdomain Methods : : : : : : : : : : : : : : 88
5.4.3 Further Remarks : 90

5.5 Multigrid Methods : 91
5.6 Row Projection Methods : 92

A Obtaining the Software 95

B Overview of the BLAS 97

CONTENTS xiii

C Glossary 99
C.1 Notation : 104

xiv CONTENTS

List of Figures

2.1 The Jacobi Method : 9
2.2 The Gauss-Seidel Method : 10
2.3 The SOR Method : 11
2.4 The SSOR Method : 13
2.5 The Preconditioned Conjugate Gradient Method : : : : : : : : : : : : 15
2.6 The Preconditioned GMRES(m) Method : : : : : : : : : : : : : : : : 20
2.7 The Preconditioned BiConjugate Gradient Method : : : : : : : : : : : 22
2.8 The Preconditioned Quasi Minimal Residual Method without Look-ahead 24
2.9 The Preconditioned Conjugate Gradient Squared Method : : : : : : : 26
2.10 The Preconditioned BiConjugate Gradient Stabilized Method : : : : : 27
2.11 The Preconditioned Chebyshev Method : : : : : : : : : : : : : : : : : 30

3.1 Preconditioner solve of a system Mx = y, with M = LU : : : : : : : : 44
3.2 Preconditioner solve of a system Mx = y, with M = (D + L)D�1(D +

U) = (D + L)(I +D�1U). : 44
3.3 Construction of a D-ILU incomplete factorization preconditioner, stor-

ing the inverses of the pivots : 46
3.4 Wavefront solution of (D + L)x = u from a central di�erence problem

on a domain of n� n points. : 48
3.5 Preconditioning step algorithm for a Neumann expansion M (p) �M�1

of an incomplete factorization M = (I + L)D(I + U). : : : : : : : : : 49
3.6 Block version of a D-ILU factorization : : : : : : : : : : : : : : : : : : 50
3.7 Algorithm for approximating the inverse of a banded matrix : : : : : : 50
3.8 Incomplete block factorization of a block tridiagonal matrix : : : : : : 51

4.1 Pro�le of a nonsymmetric skyline or variable-band matrix. : : : : : : : 69
4.2 A rearrangement of Conjugate Gradient for parallelism : : : : : : : : : 77

xv

xvi LIST OF FIGURES

Chapter 1

Introduction

Which of the following statements is true?

� Users want \black box" software that they can use with complete con�dence
for general problem classes without having to understand the �ne algorithmic
details.

� Users want to be able to tune data structures for a particular application, even
if the software is not as reliable as that provided for general methods.

It turns out both are true, for di�erent groups of users.
Traditionally, users have asked for and been provided with black box software in the

form of mathematical libraries such as LAPACK, LINPACK, NAG, and IMSL. More recently,
the high-performance community has discovered that they must write custom software
for their problem. Their reasons include inadequate functionality of existing software
libraries, data structures that are not natural or convenient for a particular problem,
and overly general software that sacri�ces too much performance when applied to a
special case of interest.

Can we meet the needs of both groups of users? We believe we can. Accordingly, in
this book, we introduce the use of templates. A template is a description of a general
algorithm rather than the executable object code or the source code more commonly
found in a conventional software library. Nevertheless, although templates are general
descriptions of key algorithms, they o�er whatever degree of customization the user
may desire. For example, they can be con�gured for the speci�c data structure of a
problem or for the speci�c computing system on which the problem is to run.

We focus on the use of iterative methods for solving large sparse systems of linear
equations.

Many methods exist for solving such problems. The trick is to �nd the most
e�ective method for the problem at hand. Unfortunately, a method that works well
for one problem type may not work as well for another. Indeed, it may not work at
all.

Thus, besides providing templates, we suggest how to choose and implement an
e�ective method, and how to specialize a method to speci�c matrix types. We restrict
ourselves to iterative methods, which work by repeatedly improving an approximate
solution until it is accurate enough. These methods access the coe�cient matrix A of

1

2 CHAPTER 1. INTRODUCTION

the linear system only via the matrix-vector product y = A�x (and perhaps z = AT �x).
Thus the user need only supply a subroutine for computing y (and perhaps z) given x,
which permits full exploitation of the sparsity or other special structure of A.

We believe that after reading this book, applications developers will be able to use
templates to get their program running on a parallel machine quickly. Nonspecialists
will know how to choose and implement an approach to solve a particular problem.
Specialists will be able to assemble and modify their codes|without having to make
the huge investment that has, up to now, been required to tune large-scale applica-
tions for each particular machine. Finally, we hope that all users will gain a better
understanding of the algorithms employed. While education has not been one of the
traditional goals of mathematical software, we believe that our approach will go a long
way in providing such a valuable service.

1.1 Why Use Templates?

Templates o�er three signi�cant advantages. First, templates are general and reusable.
Thus, they can simplify ports to diverse machines. This feature is important given the
diversity of parallel architectures.

Second, templates exploit the expertise of two distinct groups. The expert numer-
ical analyst creates a template reecting in-depth knowledge of a speci�c numerical
technique. The computational scientist then provides \value-added" capability to the
general template description, customizing it for speci�c contexts or applications needs.

And third, templates are not language speci�c. Rather, they are displayed in an
Algol-like structure, which is readily translatable into the target language such as
FORTRAN (with the use of the Basic Linear Algebra Subprograms, or BLAS, whenever
possible) and C. By using these familiar styles, we believe that the users will have
trust in the algorithms. We also hope that users will gain a better understanding of
numerical techniques and parallel programming.

For each template, we provide some or all of the following:

� a mathematical description of the ow of the iteration;

� discussion of convergence and stopping criteria;

� suggestions for applying a method to special matrix types (e.g., banded systems);

� advice for tuning (for example, which preconditioners are applicable and which
are not);

� tips on parallel implementations; and

� hints as to when to use a method, and why.

For each of the templates, the following can be obtained via electronic mail.

� a MATLAB implementation based on dense matrices;

� a FORTRAN-77 program with calls to BLAS1;

1For a discussion of BLAS as building blocks, see [69, 70, 71, 144] and LAPACK routines [3]. Also,
see Appendix B.

1.2. WHAT METHODS ARE COVERED? 3

� a C++ template implementation for matrix/vector classes.

See Appendix A for details.

1.2 What Methods Are Covered?

Many iterative methods have been developed and it is impossible to cover them all.
We chose the methods below either because they illustrate the historical development
of iterative methods, or because they represent the current state-of-the-art for solving
large sparse linear systems. The methods we discuss are:

1. Jacobi

2. Gauss-Seidel

3. Successive Over-Relaxation (SOR)

4. Symmetric Successive Over-Relaxation (SSOR)

5. Conjugate Gradient (CG)

6. Minimal Residual (MINRES) and Symmetric LQ (SYMMLQ)

7. Conjugate Gradients on the Normal Equations (CGNE and CGNR)

8. Generalized Minimal Residual (GMRES)

9. Biconjugate Gradient (BiCG)

10. Quasi-Minimal Residual (QMR)

11. Conjugate Gradient Squared (CGS)

12. Biconjugate Gradient Stabilized (Bi-CGSTAB)

13. Chebyshev Iteration

For each method we present a general description, including a discussion of the history
of the method and numerous references to the literature. We also give the mathemat-
ical conditions for selecting a given method.

We do not intend to write a \cookbook", and have deliberately avoided the words
\numerical recipes", because these phrases imply that our algorithms can be used
blindly without knowledge of the system of equations. The state of the art in iterative
methods does not permit this: some knowledge about the linear system is needed
to guarantee convergence of these algorithms, and generally the more that is known
the more the algorithm can be tuned. Thus, we have chosen to present an algorithmic
outline, with guidelines for choosing a method and implementing it on particular kinds
of high-performance machines. We also discuss the use of preconditioners and relevant
data storage issues.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Iterative Methods

The term \iterative method" refers to a wide range of techniques that use successive
approximations to obtain more accurate solutions to a linear system at each step. In
this book we will cover two types of iterative methods. Stationary methods are older,
simpler to understand and implement, but usually not as e�ective. Nonstationary
methods are a relatively recent development; their analysis is usually harder to under-
stand, but they can be highly e�ective. The nonstationary methods we present are
based on the idea of sequences of orthogonal vectors. (An exception is the Chebyshev
iteration method, which is based on orthogonal polynomials.)

The rate at which an iterative method converges depends greatly on the spectrum
of the coe�cient matrix. Hence, iterative methods usually involve a second matrix
that transforms the coe�cient matrix into one with a more favorable spectrum. The
transformation matrix is called a preconditioner. A good preconditioner improves
the convergence of the iterative method, su�ciently to overcome the extra cost of
constructing and applying the preconditioner. Indeed, without a preconditioner the
iterative method may even fail to converge.

2.1 Overview of the Methods

Below are short descriptions of each of the methods to be discussed, along with brief
notes on the classi�cation of the methods in terms of the class of matrices for which
they are most appropriate. In later sections of this chapter more detailed descriptions
of these methods are given.

� Stationary Methods

{ Jacobi.

The Jacobi method is based on solving for every variable locally with respect
to the other variables; one iteration of the method corresponds to solving
for every variable once. The resulting method is easy to understand and
implement, but convergence is slow.

{ Gauss-Seidel.

The Gauss-Seidel method is like the Jacobi method, except that it uses
updated values as soon as they are available. In general, if the Jacobi

5

6 CHAPTER 2. ITERATIVE METHODS

method converges, the Gauss-Seidel method will converge faster than the
Jacobi method, though still relatively slowly.

{ SOR.

Successive Overrelaxation (SOR) can be derived from the Gauss-Seidel
method by introducing an extrapolation parameter !. For the optimal
choice of !, SOR may converge faster than Gauss-Seidel by an order of
magnitude.

{ SSOR.

Symmetric Successive Overrelaxation (SSOR) has no advantage over SOR
as a stand-alone iterative method; however, it is useful as a preconditioner
for nonstationary methods.

� Nonstationary Methods

{ Conjugate Gradient (CG).

The conjugate gradient method derives its name from the fact that it gen-
erates a sequence of conjugate (or orthogonal) vectors. These vectors are
the residuals of the iterates. They are also the gradients of a quadratic
functional, the minimization of which is equivalent to solving the linear
system. CG is an extremely e�ective method when the coe�cient matrix
is symmetric positive de�nite, since storage for only a limited number of
vectors is required.

{ Minimum Residual (MINRES) and Symmetric LQ (SYMMLQ).

These methods are computational alternatives for CG for coe�cient matri-
ces that are symmetric but possibly inde�nite. SYMMLQ will generate the
same solution iterates as CG if the coe�cient matrix is symmetric positive
de�nite.

{ Conjugate Gradient on the Normal Equations: CGNE and CGNR.

These methods are based on the application of the CG method to one of
two forms of the normal equations for Ax = b. CGNE solves the system
(AAT)y = b for y and then computes the solution x = AT y. CGNR solves
(ATA)x = ~b for the solution vector x where ~b = AT b. When the coe�cient
matrix A is nonsymmetric and nonsingular, the normal equations matrices
AAT and ATA will be symmetric and positive de�nite, and hence CG can
be applied. The convergence may be slow, since the spectrum of the normal
equations matrices will be less favorable than the spectrum of A.

{ Generalized Minimal Residual (GMRES).

The Generalized Minimal Residual method computes a sequence of orthog-
onal vectors (like MINRES), and combines these through a least-squares
solve and update. However, unlike MINRES (and CG) it requires storing
the whole sequence, so that a large amount of storage is needed. For this
reason, restarted versions of this method are used. In restarted versions,
computation and storage costs are limited by specifying a �xed number of
vectors to be generated. This method is useful for general nonsymmetric
matrices.

2.2. STATIONARY ITERATIVE METHODS 7

{ BiConjugate Gradient (BiCG).

The Biconjugate Gradient method generates two CG-like sequences of vec-
tors, one based on a system with the original coe�cient matrix A, and one
on AT . Instead of orthogonalizing each sequence, they are made mutually
orthogonal, or \bi-orthogonal". This method, like CG, uses limited storage.
It is useful when the matrix is nonsymmetric and nonsingular; however, con-
vergence may be irregular, and there is a possibility that the method will
break down. BiCG requires a multiplication with the coe�cient matrix and
with its transpose at each iteration.

{ Quasi-Minimal Residual (QMR).

The Quasi-Minimal Residual method applies a least-squares solve and up-
date to the BiCG residuals, thereby smoothing out the irregular convergence
behavior of BiCG, which may lead to more reliable approximations. In full
glory, it has a look ahead strategy built in that avoids the BiCG breakdown.
Even without look ahead, QMR largely avoids the breakdown that can oc-
cur in BiCG. On the other hand, it does not e�ect a true minimization of
either the error or the residual, and while it converges smoothly, it often
does not improve on the BiCG in terms of the number of iteration steps.

{ Conjugate Gradient Squared (CGS).

The Conjugate Gradient Squared method is a variant of BiCG that applies
the updating operations for the A-sequence and the AT -sequences both to
the same vectors. Ideally, this would double the convergence rate, but in
practice convergence may be much more irregular than for BiCG, which
may sometimes lead to unreliable results. A practical advantage is that
the method does not need the multiplications with the transpose of the
coe�cient matrix.

{ Biconjugate Gradient Stabilized (Bi-CGSTAB).

The Biconjugate Gradient Stabilized method is a variant of BiCG, like CGS,
but using di�erent updates for the AT -sequence in order to obtain smoother
convergence than CGS.

{ Chebyshev Iteration.

The Chebyshev Iteration recursively determines polynomials with coe�-
cients chosen to minimize the norm of the residual in a min-max sense.
The coe�cient matrix must be positive de�nite and knowledge of the ex-
tremal eigenvalues is required. This method has the advantage of requiring
no inner products.

2.2 Stationary Iterative Methods

Iterative methods that can be expressed in the simple form

x(k) = Bx(k�1) + c (2.1)

(where neither B nor c depend upon the iteration count k) are called stationary iter-
ative methods. In this section, we present the four main stationary iterative methods:
the Jacobi method, the Gauss-Seidel method, the Successive Overrelaxation (SOR)

8 CHAPTER 2. ITERATIVE METHODS

method and the Symmetric Successive Overrelaxation (SSOR) method. In each case,
we summarize their convergence behavior and their e�ectiveness, and discuss how and
when they should be used. Finally, in x2.2.5, we give some historical background and
further notes and references.

2.2.1 The Jacobi Method

The Jacobi method is easily derived by examining each of the n equations in the linear
system Ax = b in isolation. If in the ith equation

nX
j=1

ai;jxj = bi;

we solve for the value of xi while assuming the other entries of x remain �xed, we
obtain

xi = (bi �
X
j 6=i

ai;jxj)=ai;i: (2.2)

This suggests an iterative method de�ned by

x
(k)
i = (bi �

X
j 6=i

ai;jx
(k�1)
j)=ai;i; (2.3)

which is the Jacobi method. Note that the order in which the equations are examined
is irrelevant, since the Jacobi method treats them independently. For this reason, the
Jacobi method is also known as the method of simultaneous displacements, since the
updates could in principle be done simultaneously.

In matrix terms, the de�nition of the Jacobi method in (2.3) can be expressed as

x(k) = D�1(L + U)x(k�1) +D�1b; (2.4)

where the matricesD, �L and �U represent the diagonal, the strictly lower-triangular,
and the strictly upper-triangular parts of A, respectively.

The pseudocode for the Jacobi method is given in Figure 2.1. Note that an auxiliary
storage vector, �x is used in the algorithm. It is not possible to update the vector x in
place, since values from x(k�1) are needed throughout the computation of x(k).

Convergence of the Jacobi method

Iterative methods are often used for solving discretized partial di�erential equations.
In that context a rigorous analysis of the convergence of simple methods such as the
Jacobi method can be given.

As an example, consider the boundary value problem

Lu = �uxx = f on (0; 1); u(0) = u0; u(1) = u1;

discretized by

Lu(xi) = 2u(xi) � u(xi�1)� u(xi+1) = f(xi)=N
2 for xi = i=N , i = 1 : : :N � 1:

The eigenfunctions of the L and L operator are the same: for n = 1 : : :N � 1 the
function un(x) = sinn�x is an eigenfunction corresponding to � = 4 sin2 n�=(2N).

2.2. STATIONARY ITERATIVE METHODS 9

Choose an initial guess x(0) to the solution x.
for k = 1; 2; : : :

for i = 1; 2; : : : ; n
�xi = 0
for j = 1; 2; : : : ; i� 1; i+ 1; : : : ; n

�xi = �xi + ai;jx
(k�1)
j

end
�xi = (bi � �xi)=ai;i

end

x(k) = �x
check convergence; continue if necessary

end

Figure 2.1: The Jacobi Method

The eigenvalues of the Jacobi iteration matrix B are then �(B) = 1 � �(L)=2 =
1� 2 sin2 n�=(2N).

From this it is easy to see that the high frequency modes (i.e., eigenfunction un
with n large) are damped quickly, whereas the damping factor for modes with n small
is close to 1. The spectral radius of the Jacobi iteration matrix is � 1 � 10=N2, and
it is attained for the eigenfunction u(x) = sin�x.

The type of analysis applied to this example can be generalized to higher dimensions
and other stationary iterative methods. For both the Jacobi and Gauss-Seidel method
(below) the spectral radius is found to be 1�O(h2) where h is the discretization mesh
width, i.e., h = N�d where N is the number of variables and d is the number of space
dimensions.

2.2.2 The Gauss-Seidel Method

Consider again the linear equations in (2.2). If we proceed as with the Jacobi method,
but now assume that the equations are examined one at a time in sequence, and that
previously computed results are used as soon as they are available, we obtain the
Gauss-Seidel method:

x
(k)
i = (bi �

X
j<i

ai;jx
(k)
j �

X
j>i

ai;jx
(k�1)
j)=ai;i: (2.5)

Two important facts about the Gauss-Seidel method should be noted. First, the
computations in (2.5) appear to be serial. Since each component of the new iterate
depends upon all previously computed components, the updates cannot be done si-
multaneously as in the Jacobi method. Second, the new iterate x(k) depends upon the
order in which the equations are examined. The Gauss-Seidel method is sometimes
called the method of successive displacements to indicate the dependence of the iter-
ates on the ordering. If this ordering is changed, the components of the new iterate
(and not just their order) will also change.

10 CHAPTER 2. ITERATIVE METHODS

Choose an initial guess x(0) to the solution x.
for k = 1; 2; : : :

for i = 1; 2; : : : ; n
� = 0
for j = 1; 2; : : : ; i� 1

� = � + ai;jx
(k)
j

end
for j = i + 1; : : : ; n

� = � + ai;jx
(k�1)
j

end

x
(k)
i = (bi � �)=ai;i

end
check convergence; continue if necessary

end

Figure 2.2: The Gauss-Seidel Method

These two points are important because if A is sparse, the dependency of each com-
ponent of the new iterate on previous components is not absolute. The presence of
zeros in the matrix may remove the inuence of some of the previous components. Us-
ing a judicious ordering of the equations, it may be possible to reduce such dependence,
thus restoring the ability to make updates to groups of components in parallel. How-
ever, reordering the equations can a�ect the rate at which the Gauss-Seidel method
converges. A poor choice of ordering can degrade the rate of convergence; a good
choice can enhance the rate of convergence. For a practical discussion of this trade-
o� (parallelism versus convergence rate) and some standard reorderings, the reader is
referred to Chapter 3 and x4.4.

In matrix terms, the de�nition of the Gauss-Seidel method in (2.5) can be expressed
as

x(k) = (D � L)�1(Ux(k�1)+ b): (2.6)

As before, D, �L and �U represent the diagonal, lower-triangular, and upper-
triangular parts of A, respectively.

The pseudocode for the Gauss-Seidel algorithm is given in Figure 2.2.

2.2.3 The Successive Overrelaxation Method

The Successive Overrelaxation Method, or SOR, is devised by applying extrapolation
to the Gauss-Seidel method. This extrapolation takes the form of a weighted average
between the previous iterate and the computed Gauss-Seidel iterate successively for
each component:

x
(k)
i = !�x

(k)
i + (1� !)x

(k�1)
i

2.2. STATIONARY ITERATIVE METHODS 11

Choose an initial guess x(0) to the solution x.
for k = 1; 2; : : :

for i = 1; 2; : : : ; n
� = 0
for j = 1; 2; : : : ; i� 1

� = � + ai;jx
(k)
j

end
for j = i + 1; : : : ; n

� = � + ai;jx
(k�1)
j

end
� = (bi � �)=ai;i

x
(k)
i = x

(k�1)
i + !(� � x

(k�1)
i)

end
check convergence; continue if necessary

end

Figure 2.3: The SOR Method

(where �x denotes a Gauss-Seidel iterate, and ! is the extrapolation factor). The idea
is to choose a value for ! that will accelerate the rate of convergence of the iterates to
the solution.

In matrix terms, the SOR algorithm can be written as follows:

x(k) = (D � !L)�1(!U + (1� !)D)x(k�1) + !(D � !L)�1b: (2.7)

The pseudocode for the SOR algorithm is given in Figure 2.3.

Choosing the Value of !

If ! = 1, the SOR method simpli�es to the Gauss-Seidel method. A theorem due to
Kahan [130] shows that SOR fails to converge if ! is outside the interval (0; 2). Though
technically the term underrelaxation should be used when 0 < ! < 1, for convenience
the term overrelaxation is now used for any value of ! 2 (0; 2).

In general, it is not possible to compute in advance the value of ! that is optimal
with respect to the rate of convergence of SOR. Even when it is possible to compute the
optimal value for !, the expense of such computation is usually prohibitive. Frequently,
some heuristic estimate is used, such as ! = 2� O(h) where h is the mesh spacing of
the discretization of the underlying physical domain.

If the coe�cient matrix A is symmetric and positive de�nite, the SOR iteration is
guaranteed to converge for any value of ! between 0 and 2, though the choice of !
can signi�cantly a�ect the rate at which the SOR iteration converges. Sophisticated
implementations of the SOR algorithm (such as that found in ITPACK [140]) employ
adaptive parameter estimation schemes to try to home in on the appropriate value
of ! by estimating the rate at which the iteration is converging.

12 CHAPTER 2. ITERATIVE METHODS

For coe�cient matrices of a special class called consistently ordered with property A
(see Young [217]), which includes certain orderings of matrices arising from the dis-
cretization of elliptic PDEs, there is a direct relationship between the spectra of the
Jacobi and SOR iteration matrices. In principle, given the spectral radius � of the
Jacobi iteration matrix, one can determine a priori the theoretically optimal value
of ! for SOR:

!opt =
2

1 +
p
1� �2

: (2.8)

This is seldom done, since calculating the spectral radius of the Jacobi matrix re-
quires an impractical amount of computation. However, relatively inexpensive rough
estimates of � (for example, from the power method, see Golub and Van Loan [109,
p. 351]) can yield reasonable estimates for the optimal value of !.

2.2.4 The Symmetric Successive Overrelaxation Method

If we assume that the coe�cient matrixA is symmetric, then the Symmetric Successive
Overrelaxation method, or SSOR, combines two SOR sweeps together in such a way
that the resulting iteration matrix is similar to a symmetric matrix. Speci�cally, the
�rst SOR sweep is carried out as in (2.7), but in the second sweep the unknowns are
updated in the reverse order. That is, SSOR is a forward SOR sweep followed by a
backward SOR sweep. The similarity of the SSOR iteration matrix to a symmetric
matrix permits the application of SSOR as a preconditioner for other iterative schemes
for symmetric matrices. Indeed, this is the primary motivation for SSOR since its
convergence rate, with an optimal value of !, is usually slower than the convergence
rate of SOR with optimal ! (see Young [217, page 462]). For details on using SSOR
as a preconditioner, see Chapter 3.

In matrix terms, the SSOR iteration can be expressed as follows:

x(k) = B1B2x
(k�1) + !(2� !)(D � !U)�1D(D � !L)�1b; (2.9)

where

B1 = (D � !U)�1(!L+ (1� !)D);

and

B2 = (D � !L)�1(!U + (1� !)D):

Note that B2 is simply the iteration matrix for SOR from (2.7), and that B1 is the
same, but with the roles of L and U reversed.

The pseudocode for the SSOR algorithm is given in Figure 2.4.

2.2.5 Notes and References

The modern treatment of iterative methods dates back to the relaxation method of
Southwell [193]. This was the precursor to the SOR method, though the order in which
approximations to the unknowns were relaxed varied during the computation. Speci�-
cally, the next unknown was chosen based upon estimates of the location of the largest
error in the current approximation. Because of this, Southwell's relaxation method

2.2. STATIONARY ITERATIVE METHODS 13

Choose an initial guess x(0) to the solution x.

Let x(
1
2
) = x(0).

for k = 1; 2; : : :
for i = 1; 2; : : : ; n

� = 0
for j = 1; 2; : : : ; i� 1

� = � + ai;jx
(k�1

2
)

j

end
for j = i + 1; : : : ; n

� = � + ai;jx
(k�1)
j

end
� = (bi � �)=ai;i

x
(k�1

2
)

i = x
(k�1)
i + !(� � x

(k�1)
i)

end
for i = n; n� 1; : : : ; 1

� = 0
for j = 1; 2; : : : ; i� 1

� = � + ai;jx
(k�1

2
)

j

end
for j = i + 1; : : : ; n

� = � + ai;jx
(k)
j

end

x
(k)
i = x

(k�1
2
)

i + !(� � x
(k�1

2
)

i)
end
check convergence; continue if necessary

end

Figure 2.4: The SSOR Method

was considered impractical for automated computing. It is interesting to note that the
introduction of multiple-instruction, multiple data-stream (MIMD) parallel computers
has rekindled an interest in so-called asynchronous, or chaotic iterative methods (see
Chazan and Miranker [54], Baudet [30], and Elkin [92]), which are closely related to
Southwell's original relaxation method. In chaotic methods, the order of relaxation
is unconstrained, thereby eliminating costly synchronization of the processors, though
the e�ect on convergence is di�cult to predict.

The notion of accelerating the convergence of an iterative method by extrapolation
predates the development of SOR. Indeed, Southwell used overrelaxation to accelerate
the convergence of his original relaxation method. More recently, the ad hoc SOR
method, in which a di�erent relaxation factor ! is used for updating each variable,
has given impressive results for some classes of problems (see Ehrlich [83]).

The three main references for the theory of stationary iterative methods are

14 CHAPTER 2. ITERATIVE METHODS

Varga [211], Young [217] and Hageman and Young [120]. The reader is referred to
these books (and the references therein) for further details concerning the methods
described in this section.

2.3 Nonstationary Iterative Methods

Nonstationary methods di�er from stationary methods in that the computations in-
volve information that changes at each iteration. Typically, constants are computed by
taking inner products of residuals or other vectors arising from the iterative method.

2.3.1 Conjugate Gradient Method (CG)

The Conjugate Gradient method is an e�ective method for symmetric positive de�nite
systems. It is the oldest and best known of the nonstationary methods discussed
here. The method proceeds by generating vector sequences of iterates (i.e., successive
approximations to the solution), residuals corresponding to the iterates, and search
directions used in updating the iterates and residuals. Although the length of these
sequences can become large, only a small number of vectors needs to be kept in memory.
In every iteration of the method, two inner products are performed in order to compute
update scalars that are de�ned to make the sequences satisfy certain orthogonality
conditions. On a symmetric positive de�nite linear system these conditions imply that
the distance to the true solution is minimized in some norm.

The iterates x(i) are updated in each iteration by a multiple (�i) of the search
direction vector p(i):

x(i) = x(i�1) + �ip
(i):

Correspondingly the residuals r(i) = b�Ax(i) are updated as

r(i) = r(i�1) � �q(i) where q(i) = Ap(i): (2.10)

The choice � = �i = r(i�1)
T

r(i�1)=p(i)
T

Ap(i) minimizes r(i)
T

A�1r(i) over all possible
choices for � in equation (2.10).

The search directions are updated using the residuals

p(i) = r(i) + �i�1p
(i�1); (2.11)

where the choice �i = r(i)
T

r(i)=r(i�1)
T

r(i�1) ensures that p(i) and Ap(i�1) { or equiv-
alently, r(i) and r(i�1) { are orthogonal. In fact, one can show that this choice of �i
makes p(i) and r(i) orthogonal to all previous Ap(j) and r(j) respectively.

The pseudocode for the Preconditioned Conjugate Gradient Method is given in
Figure 2.5. It uses a preconditioner M ; for M = I one obtains the unpreconditioned
version of the Conjugate Gradient Algorithm. In that case the algorithm may be
further simpli�ed by skipping the \solve" line, and replacing z(i�1) by r(i�1) (and z(0)

by r(0)).

2.3. NONSTATIONARY ITERATIVE METHODS 15

Compute r(0) = b� Ax(0) for some initial guess x(0)

for i = 1; 2; : : :
solve Mz(i�1) = r(i�1)

�i�1 = r(i�1)
T

z(i�1)

if i = 1
p(1) = z(0)

else
�i�1 = �i�1=�i�2
p(i) = z(i�1) + �i�1p

(i�1)

endif

q(i) = Ap(i)

�i = �i�1=p
(i)T q(i)

x(i) = x(i�1) + �ip
(i)

r(i) = r(i�1) � �iq
(i)

check convergence; continue if necessary
end

Figure 2.5: The Preconditioned Conjugate Gradient Method

Theory

The unpreconditioned conjugate gradient method constructs the ith iterate x(i) as an
element of x(0)+ spanfr(0); : : : ; Ai�1r(0)g so that (x(i) � x̂)TA(x(i) � x̂) is minimized,
where x̂ is the exact solution of Ax = b. This minimum is guaranteed to exist in
general only if A is symmetric positive de�nite. The preconditioned version of the
method uses a di�erent subspace for constructing the iterates, but it satis�es the same
minimization property, although over this di�erent subspace. It requires in addition
that the preconditioner M is symmetric and positive de�nite.

The above minimization of the error is equivalent to the residuals r(i) = b� Ax(i)

being M�1 orthogonal (that is, r(i)
T

M�1r(j) = 0 if i 6= j). Since for symmetric A an
orthogonal basis for the Krylov subspace spanfr(0); : : : ; Ai�1r(0)g can be constructed
with only three-term recurrences, such a recurrence also su�ces for generating the
residuals. In the Conjugate Gradient method two coupled two-term recurrences are
used; one that updates residuals using a search direction vector, and one updating the
search direction with a newly computed residual. This makes the Conjugate Gradient
Method quite attractive computationally.

There is a close relationship between the Conjugate Gradient method and the
Lanczos method for determining eigensystems, since both are based on the construction
of an orthogonal basis for the Krylov subspace, and a similarity transformation of
the coe�cient matrix to tridiagonal form. The coe�cients computed during the CG
iteration then arise from the LU factorization of this tridiagonal matrix. From the
CG iteration one can reconstruct the Lanczos process, and vice versa; see Paige and
Saunders [168] and Golub and Van Loan [109, x10.2.6]. This relationship can be
exploited to obtain relevant information about the eigensystem of the (preconditioned)

16 CHAPTER 2. ITERATIVE METHODS

matrix A; see x5.1.

Convergence

Accurate predictions of the convergence of iterative methods are di�cult to make,
but useful bounds can often be obtained. For the Conjugate Gradient method, the
error can be bounded in terms of the spectral condition number �2 of the matrix
M�1A. (Recall that if �max and �min are the largest and smallest eigenvalues of
a symmetric positive de�nite matrix B, then the spectral condition number of B is
�2(B) = �max(B)=�min(B)). If x̂ is the exact solution of the linear system Ax = b, with
symmetric positive de�nite matrix A, then for CG with symmetric positive de�nite
preconditioner M , it can be shown that

kx(i) � x̂kA � 2�ikx(0) � x̂kA (2.12)

where � = (
p
�2 � 1)=(

p
�2 + 1) (see Golub and Van Loan [109, x10.2.8], and

Kaniel [131]), and kyk2A � (y;Ay). From this relation we see that the number of
iterations to reach a relative reduction of � in the error is proportional to

p
�2.

In some cases, practical application of the above error bound is straightforward.
For example, elliptic second order partial di�erential equations typically give rise to
coe�cient matrices A with �2(A) = O(h�2) (where h is the discretization mesh width),
independent of the order of the �nite elements or di�erences used, and of the number
of space dimensions of the problem (see for instance Axelsson and Barker [14, x5.5]).
Thus, without preconditioning, we expect a number of iterations proportional to h�1

for the Conjugate Gradient method.
Other results concerning the behavior of the Conjugate Gradient algorithm have

been obtained. If the extremal eigenvalues of the matrix M�1A are well separated,
then one often observes so-called superlinear convergence (see Concus, Golub and
O'Leary [58]); that is, convergence at a rate that increases per iteration. This phe-
nomenon is explained by the fact that CG tends to eliminate components of the er-
ror in the direction of eigenvectors associated with extremal eigenvalues �rst. After
these have been eliminated, the method proceeds as if these eigenvalues did not ex-
ist in the given system, i.e., the convergence rate depends on a reduced system with
a (much) smaller condition number (for an analysis of this, see Van der Sluis and
Van der Vorst [199]). The e�ectiveness of the preconditioner in reducing the condi-
tion number and in separating extremal eigenvalues can be deduced by studying the
approximated eigenvalues of the related Lanczos process.

Implementation

The Conjugate Gradient method involves one matrix-vector product, three vector
updates, and two inner products per iteration. Some slight computational variants
exist that have the same structure (see Reid [179]). Variants that cluster the inner
products, a favorable property on parallel machines, are discussed in x4.4.

For a discussion of the Conjugate Gradient method on vector and shared memory
computers, see Dongarra, et al. [71, 166]. For discussions of the method for more gen-
eral parallel architectures see Demmel, Heath and Van der Vorst [67] and Ortega [166],
and the references therein.

2.3. NONSTATIONARY ITERATIVE METHODS 17

Further references

Amore formal presentation of CG, as well as many theoretical properties, can be found
in the textbook by Hackbusch [118]. Shorter presentations are given in Axelsson and
Barker [14] and Golub and Van Loan [109]. An overview of papers published in the
�rst 25 years of existence of the method is given in Golub and O'Leary [108].

2.3.2 MINRES and SYMMLQ

The Conjugate Gradient method can be viewed as a special variant of the Lanc-
zos method (see x5.1) for positive de�nite symmetric systems. The MINRES and
SYMMLQ methods are variants that can be applied to symmetric inde�nite systems.

The vector sequences in the Conjugate Gradient method correspond to a factoriza-
tion of a tridiagonal matrix similar to the coe�cient matrix. Therefore, a breakdown
of the algorithm can occur corresponding to a zero pivot if the matrix is inde�nite.
Furthermore, for inde�nite matrices the minimization property of the Conjugate Gra-
dient method is no longer well-de�ned. The MINRES and SYMMLQ methods are
variants of the CG method that avoid the LU -factorization and do not su�er from
breakdown. MINRES minimizes the residual in the 2-norm. SYMMLQ solves the
projected system, but does not minimize anything (it keeps the residual orthogonal to
all previous ones). The convergence behavior of Conjugate Gradients and MINRES
for inde�nite systems was analyzed by Paige, Parlett, and Van der Vorst [167].

Theory

When A is not positive de�nite, but symmetric, we can still construct an orthogonal
basis for the Krylov subspace by three term recurrence relations. Eliminating the
search directions in equations (2.10) and (2.11) gives a recurrence

Ar(i) = r(i+1)ti+1;i + r(i)ti;i + r(i�1)ti�1;i;

which can be written in matrix form as

ARi = Ri+1
�Ti;

where �Ti is an (i + 1)� i tridiagonal matrix

�Ti =

 i !0BBBBBBBBB@

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .

1CCCCCCCCCA
:

"

i + 1

#

In this case we have the problem that (�; �)A no longer de�nes an inner product. How-
ever we can still try to minimize the residual in the 2-norm by obtaining

x(i) 2 fr(0); Ar(0); : : : ; Ai�1r(0)g; x(i) = Ri�y

18 CHAPTER 2. ITERATIVE METHODS

that minimizes

kAx(i) � bk2 = kARi�y � bk2 = kRi+1
�Tiy � bk2:

Now we exploit the fact that ifDi+1 � diag(kr(0)k2; kr(1)k2; :::; kr(i)k2), then Ri+1D
�1
i+1

is an orthonormal transformation with respect to the current Krylov subspace:

kAx(i) � bk2 = kDi+1
�Tiy � kr(0)k2e(1)k2

and this �nal expression can simply be seen as a minimumnorm least squares problem.
The element in the (i + 1; i) position of �Ti can be annihilated by a simple Givens

rotation and the resulting upper bidiagonal system (the other subdiagonal elements
having been removed in previous iteration steps) can simply be solved, which leads to
the MINRES method (see Paige and Saunders [168]).

Another possibility is to solve the system Tiy = kr(0)k2e(1), as in the CG method
(Ti is the upper i � i part of �Ti). Other than in CG we cannot rely on the existence
of a Cholesky decomposition (since A is not positive de�nite). An alternative is then
to decompose Ti by an LQ-decomposition. This again leads to simple recurrences and
the resulting method is known as SYMMLQ (see Paige and Saunders [168]).

2.3.3 CG on the Normal Equations, CGNE and CGNR

The CGNE and CGNR methods are the simplest methods for nonsymmetric or in-
de�nite systems. Since other methods for such systems are in general rather more
complicated than the Conjugate Gradient method, transforming the system to a sym-
metric de�nite one and then applying the Conjugate Gradient method is attractive for
its coding simplicity.

Theory

If a system of linear equations Ax = b has a nonsymmetric, possibly inde�nite (but
nonsingular), coe�cient matrix, one obvious attempt at a solution is to apply Conju-
gate Gradient to a related symmetric positive de�nite system, ATAx = AT b. While
this approach is easy to understand and code, the convergence speed of the Conjugate
Gradient method now depends on the square of the condition number of the original
coe�cient matrix. Thus the rate of convergence of the CG procedure on the normal
equations may be slow.

Several proposals have been made to improve the numerical stability of this method.
The best known is by Paige and Saunders [169] and is based upon applying the Lanczos
method to the auxiliary system�

I A
AT 0

��
r
x

�
=

�
b
0

�
:

A clever execution of this scheme delivers the factors L and U of the LU -decomposition
of the tridiagonal matrix that would have been computed by carrying out the Lanczos
procedure with ATA.

Another means for improving the numerical stability of this normal equations ap-
proach is suggested by Bj�orck and Elfving in [34]. The observation that the matrix
ATA is used in the construction of the iteration coe�cients through an inner prod-
uct like (p;ATAp) leads to the suggestion that such an inner product be replaced
by (Ap;Ap).

2.3. NONSTATIONARY ITERATIVE METHODS 19

2.3.4 Generalized Minimal Residual (GMRES)

The Generalized Minimal Residual method [189] is an extension of MINRES (which
is only applicable to symmetric systems) to unsymmetric systems. Like MINRES, it
generates a sequence of orthogonal vectors, but in the absence of symmetry this can
no longer be done with short recurrences; instead, all previously computed vectors in
the orthogonal sequence have to be retained. For this reason, \restarted" versions of
the method are used.

In the Conjugate Gradient method, the residuals form an orthogonal basis for the
space spanfr(0); Ar(0); A2r(0); : : :g. In GMRES, this basis is formed explicitly:

w(i) = Av(i)

for k = 1; : : : ; i
w(i) = w(i) � (w(i); v(k))v(k)

end

v(i+1) = w(i)=kw(i)k

The reader may recognize this as a modi�ed Gram-Schmidt orthogonalization. Ap-
plied to the Krylov sequence fAkr(0)g this orthogonalization is called the \Arnoldi
method" [6]. The inner product coe�cients (w(i); v(k)) and kw(i)k are stored in an
upper Hessenberg matrix.

The GMRES iterates are constructed as

x(i) = x(0) + y1v
(1) + � � �+ yiv

(i);

where the coe�cients yk have been chosen to minimize the residual norm kb�Ax(i)k.
The GMRES algorithm has the property that this residual norm can be computed
without the iterate having been formed. Thus, the expensive action of forming the
iterate can be postponed until the residual norm is deemed small enough.

The pseudocode for the restarted GMRES(m) algorithm with preconditioner M is
given in Figure 2.6.

Theory

The Generalized Minimum Residual (GMRES) method is designed to solve nonsym-
metric linear systems (see Saad and Schultz [189]). The most popular form of GMRES
is based on the modi�ed Gram-Schmidt procedure, and uses restarts to control storage
requirements.

If no restarts are used, GMRES (like any orthogonalizing Krylov-subspace method)
will converge in no more than n steps (assuming exact arithmetic). Of course this
is of no practical value when n is large; moreover, the storage and computational
requirements in the absence of restarts are prohibitive. Indeed, the crucial element for
successful application of GMRES(m) revolves around the decision of when to restart;
that is, the choice of m. Unfortunately, there exist examples for which the method
stagnates and convergence takes place only at the nth step. For such systems, any
choice of m less than n fails to converge.

Saad and Schultz [189] have proven several useful results. In particular, they show
that if the coe�cient matrix A is real and nearly positive de�nite, then a \reasonable"
value for m may be selected. Implications of the choice of m are discussed below.

20 CHAPTER 2. ITERATIVE METHODS

x(0) is an initial guess
for j = 1; 2; ::::

Solve r from Mr = b� Ax(0)

v(1) = r=krk2
s := krk2e1
for i = 1; 2; :::;m

Solve w from Mw = Av(i)

for k = 1; :::; i
hk;i = (w; v(k))
w = w � hk;iv

(k)

end
hi+1;i = kwk2
v(i+1) = w=hi+1;i
apply J1; :::; Ji�1 on (h1;i; :::; hi+1;i)
construct Ji, acting on ith and (i + 1)st component
of h:;i, such that (i+ 1)st component of Jih:;i is 0
s := Jis
if s(i + 1) is small enough then (UPDATE(~x; i) and quit)

end
UPDATE(~x;m)
check convergence; continue if necessary

end

In this scheme UPDATE(~x; i)
replaces the following computations:

Compute y as the solution of Hy = ~s, in which
the upper i � i triangular part of H has hi;j as
its elements (in least squares sense if H is singular),
~s represents the �rst i components of s
~x = x(0) + y1v

(1) + y2v
(2) + :::+ yiv

(i)

s(i+1) = kb� A~xk2
if ~x is an accurate enough approximation then quit
else x(0) = ~x

Figure 2.6: The Preconditioned GMRES(m) Method

2.3. NONSTATIONARY ITERATIVE METHODS 21

Implementation

A common implementation of GMRES is suggested by Saad and Schultz in [189] and
relies on using modi�ed Gram-Schmidt orthogonalization. Householder transforma-
tions, which are relatively costly but stable, have also been proposed. The Householder
approach results in a three-fold increase in work associated with inner products and
vector updates (not with matrix vector products); however, convergence may be bet-
ter, especially for ill-conditioned systems (see Walker [214]). From the point of view of
parallelism, Gram-Schmidt orthogonalization may be preferred, giving up some stabil-
ity for better parallelization properties (see Demmel, Heath and Van der Vorst [67]).
Here we adopt the Modi�ed Gram-Schmidt approach.

The major drawback to GMRES is that the amount of work and storage required
per iteration rises linearly with the iteration count. Unless one is fortunate enough to
obtain extremely fast convergence, the cost will rapidly become prohibitive. The usual
way to overcome this limitation is by restarting the iteration. After a chosen number
(m) of iterations, the accumulated data are cleared and the intermediate results are
used as the initial data for the next m iterations. This procedure is repeated until
convergence is achieved. The di�culty is in choosing an appropriate value form. Ifm is
\too small", GMRES(m) may be slow to converge, or fail to converge entirely. A value
of m that is larger than necessary involves excessive work (and uses more storage).
Unfortunately, there are no de�nite rules governing the choice of m|choosing when
to restart is a matter of experience.

For a discussion of GMRES for vector and shared memory computers see Dongarra
et al. [71]; for more general architectures, see Demmel, Heath and Van der Vorst [67].

2.3.5 BiConjugate Gradient (BiCG)

The Conjugate Gradient method is not suitable for nonsymmetric systems because
the residual vectors cannot be made orthogonal with short recurrences (for proof of
this see Voevodin [213] or Faber and Manteu�el [96]). The GMRES method retains
orthogonality of the residuals by using long recurrences, at the cost of a larger storage
demand. The BiConjugate Gradient method takes another approach, replacing the
orthogonal sequence of residuals by two mutually orthogonal sequences, at the price
of no longer providing a minimization.

The update relations for residuals in the Conjugate Gradient method are aug-
mented in the BiConjugate Gradient method by relations that are similar but based
on AT instead of A. Thus we update two sequences of residuals

r(i) = r(i�1) � �iAp
(i); ~r(i) = ~r(i�1) � �iA

T ~p(i);

and two sequences of search directions

p(i) = r(i�1) + �i�1p
(i�1); ~p(i) = ~r(i�1) + �i�1~p

(i�1):

The choices

�i =
~r(i�1)

T

r(i�1)

~p(i)TAp(i)
; �i =

~r(i)
T

r(i)

~r(i�1)T r(i�1)

22 CHAPTER 2. ITERATIVE METHODS

Compute r(0) = b �Ax(0) for some initial guess x(0).
Choose ~r(0) (for example, ~r(0) = r(0)).
for i = 1; 2; : : :

solve Mz(i�1) = r(i�1)

solve MT ~z(i�1) = ~r(i�1)

�i�1 = z(i�1)
T

~r(i�1)

if �i�1 = 0, method fails
if i = 1

p(i) = z(i�1)

~p(i) = ~z(i�1)

else
�i�1 = �i�1=�i�2
p(i) = z(i�1) + �i�1p

(i�1)

~p(i) = ~z(i�1) + �i�1~p
(i�1)

endif

q(i) = Ap(i)

~q(i) = AT ~p(i)

�i = �i�1=~p(i)
T

q(i)

x(i) = x(i�1) + �ip
(i)

r(i) = r(i�1) � �iq
(i)

~r(i) = ~r(i�1) � �i~q(i)

check convergence; continue if necessary
end

Figure 2.7: The Preconditioned BiConjugate Gradient Method

ensure the bi-orthogonality relations

~r(i)
T

r(j) = ~p(i)
T

Ap(j) = 0 if i 6= j:

The pseudocode for the Preconditioned BiConjugate Gradient Method with pre-
conditioner M is given in Figure 2.7.

Convergence

Few theoretical results are known about the convergence of BiCG. For symmetric
positive de�nite systems the method delivers the same results as CG, but at twice the
cost per iteration. For nonsymmetric matrices it has been shown that in phases of the
process where there is signi�cant reduction of the norm of the residual, the method
is more or less comparable to full GMRES (in terms of numbers of iterations) (see
Freund and Nachtigal [102]). In practice this is often con�rmed, but it is also observed
that the convergence behavior may be quite irregular, and the method may even break

down. The breakdown situation due to the possible event that z(i�1)
T

~r(i�1) � 0 can
be circumvented by so-called look-ahead strategies (see Parlett, Taylor and Liu [172]).

2.3. NONSTATIONARY ITERATIVE METHODS 23

This leads to complicated codes and is beyond the scope of this book. The other

breakdown situation, ~p(i)
T

q(i) � 0, occurs when the LU -decomposition fails (see the
theory subsection of x2.3.1), and can be repaired by using another decomposition. This
is done in the version of QMR that we adopted (see x2.3.6).

Sometimes, breakdown or near-breakdown situations can be satisfactorily avoided
by a restart at the iteration step immediately before the (near-) breakdown step.
Another possibility is to switch to a more robust (but possibly more expensive) method,
like GMRES.

Implementation

BiCG requires computing a matrix-vector product Ap(k) and a transpose prod-
uct AT ~p(k). In some applications the latter product may be impossible to perform, for
instance if the matrix is not formed explicitly and the regular product is only given
in operation form, for instance as a function call evaluation.

In a parallel environment, the two matrix-vector products can theoretically be
performed simultaneously; however, in a distributed-memory environment, there will
be extra communication costs associated with one of the two matrix-vector products,
depending upon the storage scheme for A. A duplicate copy of the matrix will alleviate
this problem, at the cost of doubling the storage requirements for the matrix.

Care must also be exercised in choosing the preconditioner, since similar problems
arise during the two solves involving the preconditioning matrix.

It is di�cult to make a fair comparison between GMRES and BiCG. GMRES
really minimizes a residual, but at the cost of increasing work for keeping all residuals
orthogonal and increasing demands for memory space. BiCG does not minimize a
residual, but often its accuracy is comparable to GMRES, at the cost of twice the
amount of matrix vector products per iteration step. However, the generation of the
basis vectors is relatively cheap and the memory requirements are modest. Several
variants of BiCG have been proposed that increase the e�ectiveness of this class of
methods in certain circumstances. These variants (CGS and Bi-CGSTAB) will be
discussed in coming subsections.

2.3.6 Quasi-Minimal Residual (QMR)

The BiConjugate Gradient method often displays rather irregular convergence behav-
ior. Moreover, the implicit LU decomposition of the reduced tridiagonal system may
not exist, resulting in breakdown of the algorithm. A related algorithm, the Quasi-
Minimal Residual method of Freund and Nachtigal [102], [103] attempts to overcome
these problems. The main idea behind this algorithm is to solve the reduced tridi-
agonal system in a least squares sense, similar to the approach followed in GMRES.
Since the constructed basis for the Krylov subspace is bi-orthogonal, rather than or-
thogonal as in GMRES, the obtained solution is viewed as a quasi-minimal residual
solution, which explains the name. Additionally, QMR uses look-ahead techniques to
avoid breakdowns in the underlying Lanczos process, which makes it more robust than
BiCG.

24 CHAPTER 2. ITERATIVE METHODS

Compute r(0) = b� Ax(0) for some initial guess x(0)

~v(1) = r(0); solveM1y = ~v(1); �1 = kyk2
Choose ~w(1) , for example ~w(1) = r(0)

solve M t
2z = ~w(1); �1 = kzk2

0 = 1; �0 = �1
for i = 1; 2; : : :

if �i = 0 or �i = 0 method fails

v(i) = ~v(i)=�i; y = y=�i
w(i) = ~w(i)=�i; z = z=�i
�i = zTy; if �i = 0 method fails
solve M2~y = y
solve MT

1 ~z = z
if i = 1

p(1) = ~y; q(1) = ~z
else

p(i) = ~y � (�i�i=�i�1)p(i�1)

q(i) = ~z � (�i�i=�i�1)q
(i�1)

endif

~p = Ap(i)

�i = q(i)
T

~p; if �i = 0 method fails
�i = �i=�i; if �i = 0 method fails
~v(i+1) = ~p� �iv

(i)

solve M1y = ~v(i+1)

�i+1 = kyk2
~w(i+1) = AT q(i) � �iw

(i)

solve MT
2 z = ~w(i+1)

�i+1 = kzk2
�i = �i+1=(i�1j�ij); i = 1=

p
1 + �2i ; if i = 0 method fails

�i = ��i�1�i2i =(�i2i�1)
if i = 1

d(1) = �1p
(1); s(1) = �1~p

else

d(i) = �ip
(i) + (�i�1i)2d(i�1)

s(i) = �i~p+ (�i�1i)2s(i�1)

endif

x(i) = x(i�1) + d(i)

r(i) = r(i�1) � s(i)

check convergence; continue if necessary
end

Figure 2.8: The Preconditioned Quasi Minimal Residual Method without Look-ahead

2.3. NONSTATIONARY ITERATIVE METHODS 25

Convergence

The convergence behavior of QMR is typically much smoother than for BiCG. Freund
and Nachtigal [102] present quite general error bounds which show that QMR may be
expected to converge about as fast as GMRES. From a relation between the residuals
in BiCG and QMR (Freund and Nachtigal [102, relation (5.10)]) one may deduce that
at phases in the iteration process where BiCG makes signi�cant progress, QMR has
arrived at about the same approximation for x̂. On the other hand, when BiCG makes
no progress at all, QMR may still show slow convergence.

The look-ahead steps in the version of the QMR method discussed in [102] prevents
breakdown in all cases but the so-called \incurable breakdown", where no practical
number of look-ahead steps would yield a next iterate.

Implementation

The pseudocode for the Preconditioned Quasi Minimal Residual Method, with pre-
conditioner M = M1M2, is given in Figure 2.8. This algorithm follows the two term
recurrence version without look-ahead, presented by Freund and Nachtigal [103] as Al-
gorithm 7.1. This version of QMR is simpler to implement than the full QMR method
with look-ahead, but it is susceptible to breakdown of the underlying Lanczos process.
(Other implementational variations are whether to scale Lanczos vectors or not, or to
use three-term recurrences instead of coupled two-term recurrences. Such decisions
usually have implications for the stability and the e�ciency of the algorithm.) A pro-
fessional implementation of QMR with look-ahead is given in Freund and Nachtigal's
QMRPACK, which is available through netlib; see Appendix A.

We have modi�ed Algorithm 7.1 in [103] to include a relatively inexpensive recur-
rence relation for the computation of the residual vector. This requires a few extra
vectors of storage and vector update operations per iteration, but it avoids expending
a matrix-vector product on the residual calculation. Also, the algorithm has been
modi�ed so that only two full preconditioning steps are required instead of three.

Computation of the residual is done for the convergence test. If one uses right (or
post) preconditioning, that is M1 = I, then a cheap upper bound for kr(i)k can be
computed in each iteration, avoiding the recursions for r(i). For details, see Freund
and Nachtigal [102, proposition 4.1]. This upper bound may be pessimistic by a factor
of at most

p
i + 1.

QMR has roughly the same problems with respect to vector and parallel imple-
mentation as BiCG. The scalar overhead per iteration is slightly more than for BiCG.
In all cases where the slightly cheaper BiCG method converges irregularly (but fast
enough), QMR may be preferred for stability reasons.

2.3.7 Conjugate Gradient Squared Method (CGS)

In BiCG, the residual vector r(i) can be regarded as the product of r(0) and an ith
degree polynomial in A, that is

r(i) = Pi(A)r
(0): (2.13)

This same polynomial satis�es er(i) = Pi(A
T)er(0) so that

�i = (~r(i); r(i)) = (Pi(A
T)~r(0); Pi(A)r

(0)) = (~r(0); P 2
i (A)r

(0)): (2.14)

26 CHAPTER 2. ITERATIVE METHODS

Compute r(0) = b� Ax(0) for some initial guess x(0)

Choose ~r (for example, ~r = r(0))
for i = 1; 2; : : :

�i�1 = ~rT r(i�1)

if �i�1 = 0 method fails
if i = 1

u(1) = r(0)

p(1) = u(1)

else
�i�1 = �i�1=�i�2
u(i) = r(i�1) + �i�1q

(i�1)

p(i) = u(i) + �i�1(q(i�1) + �i�1p
(i�1))

endif

solve Mp̂ = p(i)

v̂ = Ap̂
�i = �i�1=~rT v̂
q(i) = u(i) � �iv̂

solve Mû = u(i) + q(i)

x(i) = x(i�1) + �iû
q̂ = Aû

r(i) = r(i�1) � �iq̂
check convergence; continue if necessary

end

Figure 2.9: The Preconditioned Conjugate Gradient Squared Method

This suggests that if Pi(A) reduces r(0) to a smaller vector r(i), then it might
be advantageous to apply this \contraction" operator twice, and compute P 2

i (A)r
(0).

Equation (2.14) shows that the iteration coe�cients can still be recovered from these
vectors, and it turns out to be easy to �nd the corresponding approximations for x.
This approach leads to the Conjugate Gradient Squared method (see Sonneveld [192]).

Convergence

Often one observes a speed of convergence for CGS that is about twice as fast as for
BiCG, which is in agreement with the observation that the same \contraction" operator
is applied twice. However, there is no reason that the \contraction" operator, even if
it really reduces the initial residual r(0), should also reduce the once reduced vector
r(k) = Pk(A)r(0). This is evidenced by the often highly irregular convergence behavior
of CGS. One should be aware of the fact that local corrections to the current solution
may be so large that cancelation e�ects occur. This may lead to a less accurate solution
than suggested by the updated residual (see Van der Vorst [207]). The method tends
to diverge if the starting guess is close to the solution.

2.3. NONSTATIONARY ITERATIVE METHODS 27

Compute r(0) = b� Ax(0) for some initial guess x(0)

Choose ~r (for example, ~r = r(0))
for i = 1; 2; : : :

�i�1 = ~rT r(i�1)

if �i�1 = 0 method fails
if i = 1
p(i) = r(i�1)

else
�i�1 = (�i�1=�i�2)(�i�1=!i�1)
p(i) = r(i�1) + �i�1(p(i�1) � !i�1v

(i�1))
endif

solve Mp̂ = p(i)

v(i) = Ap̂

�i = �i�1=~rTv(i)

s = r(i�1) � �iv
(i)

check norm of s; if small enough: set x(i) = x(i�1) + �ip̂ and stop
solve Mŝ = s
t = Aŝ
!i = tT s=tT t

x(i) = x(i�1) + �ip̂+ !iŝ

r(i) = s � !it
check convergence; continue if necessary
for continuation it is necessary that !i 6= 0

end

Figure 2.10: The Preconditioned BiConjugate Gradient Stabilized Method

Implementation

CGS requires about the same number of operations per iteration as BiCG, but does not
involve computations with AT . Hence, in circumstances where computation with AT

is impractical, CGS may be attractive.

The pseudocode for the Preconditioned Conjugate Gradient Squared Method with
preconditioner M is given in Figure 2.9.

2.3.8 BiConjugate Gradient Stabilized (Bi-CGSTAB)

The BiConjugate Gradient Stabilized method (Bi-CGSTAB) was developed to solve
nonsymmetric linear systems while avoiding the often irregular convergence patterns
of the Conjugate Gradient Squared method (see Van der Vorst [207]). Instead of com-
puting the CGS sequence i 7! P 2

i (A)r
(0), Bi-CGSTAB computes i 7! Qi(A)Pi(A)r(0)

where Qi is an ith degree polynomial describing a steepest descent update.

28 CHAPTER 2. ITERATIVE METHODS

Convergence

Bi-CGSTAB often converges about as fast as CGS, sometimes faster and sometimes
not. CGS can be viewed as a method in which the BiCG \contraction" operator is
applied twice. Bi-CGSTAB can be interpreted as the product of BiCG and repeatedly
applied GMRES(1). At least locally, a residual vector is minimized, which leads to
a considerably smoother convergence behavior. On the other hand, if the local GM-
RES(1) step stagnates, then the Krylov subspace is not expanded, and Bi-CGSTAB
will break down. This is a breakdown situation that can occur in addition to the other
breakdown possibilities in the underlying BiCG algorithm. This type of breakdown
may be avoided by combining BiCG with other methods, i.e., by selecting other values
for !i (see the algorithm). One such alternative is Bi-CGSTAB2 (see Gutknecht [115]);
more general approaches are suggested by Sleijpen and Fokkema in [190].

Note that Bi-CGSTAB has two stopping tests: if the method has already converged
at the �rst test on the norm of s, the subsequent update would be numerically ques-
tionable. Additionally, stopping on the �rst test saves a few unnecessary operations,
but this is of minor importance.

Implementation

Bi-CGSTAB requires two matrix-vector products and four inner products, i.e., two
inner products more than BiCG and CGS.

The pseudocode for the Preconditioned BiConjugate Gradient Stabilized Method
with preconditioner M is given in Figure 2.10.

2.3.9 Chebyshev Iteration

Chebyshev Iteration is another method for solving nonsymmetric problems (see Golub
and Van Loan [109, x10.1.5] and Varga [211, Chapter 5]). Chebyshev Iteration avoids
the computation of inner products as is necessary for the other nonstationary meth-
ods. For some distributed memory architectures these inner products are a bottleneck
with respect to e�ciency. The price one pays for avoiding inner products is that the
method requires enough knowledge about the spectrum of the coe�cient matrix A
that an ellipse enveloping the spectrum can be identi�ed; however this di�culty can
be overcome via an adaptive construction developed by Manteu�el [146], and imple-
mented by Ashby [7]. Chebyshev iteration is suitable for any nonsymmetric linear
system for which the enveloping ellipse does not include the origin.

Comparison with other methods

Comparing the pseudocode for Chebyshev Iteration with the pseudocode for the Conju-
gate Gradient method shows a high degree of similarity, except that no inner products
are computed in Chebyshev Iteration.

Scalars c and d must be selected so that they de�ne a family of ellipses with
common center d > 0 and foci d+c and d�c which contain the ellipse that encloses the
spectrum (or more general, �eld of values) of A and for which the rate r of convergence
is minimal:

r =
a+
p
a2 � c2

d+
p
d2 � c2

; (2.15)

2.3. NONSTATIONARY ITERATIVE METHODS 29

where a is the length of the x-axis of the ellipse.

We provide code in which it is assumed that the ellipse degenerate to the interval
[�min; �max], that is all eigenvalues are real. For code including the adaptive determi-
nation of the iteration parameters c and d the reader is referred to Ashby [7].

The Chebyshev method has the advantage over GMRES that only short recurrences
are used. On the other hand, GMRES is guaranteed to generate the smallest residual
over the current search space. The BiCG methods, which also use short recurrences, do
not minimize the residual in a suitable norm; however, unlike Chebyshev iteration, they
do not require estimation of parameters (the spectrum of A). Finally, GMRES and
BiCG may be more e�ective in practice, because of superlinear convergence behavior,
which cannot be expected for Chebyshev.

For symmetric positive de�nite systems the \ellipse" enveloping the spectrum de-
generates to the interval [�min; �max] on the positive x-axis, where �min and �max are
the smallest and largest eigenvalues of M�1A. In circumstances where the compu-
tation of inner products is a bottleneck, it may be advantageous to start with CG,
compute estimates of the extremal eigenvalues from the CG coe�cients, and then af-
ter su�cient convergence of these approximations switch to Chebyshev Iteration. A
similar strategy may be adopted for a switch from GMRES, or BiCG-type methods,
to Chebyshev Iteration.

Convergence

In the symmetric case (where A and the preconditioner M are both symmetric) for
the Chebyshev Iteration we have the same upper bound as for the Conjugate Gradient
method, provided c and d are computed from �min and �max (the extremal eigenvalues
of the preconditioned matrix M�1A).

There is a severe penalty for overestimating or underestimating the �eld of values.
For example, if in the symmetric case �max is underestimated, then the method may
diverge; if it is overestimated then the result may be very slow convergence. Similar
statements can be made for the nonsymmetric case. This implies that one needs
fairly accurate bounds on the spectrum of M�1A for the method to be e�ective (in
comparison with CG or GMRES).

Implementation

In Chebyshev Iteration the iteration parameters are known as soon as one knows the
ellipse containing the eigenvalues (or rather, the �eld of values) of the operator. There-
fore the computation of inner products, as is necessary in methods like GMRES or CG,
is avoided. This avoids the synchronization points required of CG-type methods, so
machines with hierarchical or distributed memory may achieve higher performance (it
also suggests strong parallelization properties; for a discussion of this see Saad [185],
and Dongarra, et al. [71]). Speci�cally, as soon as some segment of w is computed, we
may begin computing, in sequence, corresponding segments of p, x, and r.

The pseudocode for the Preconditioned Chebyshev Method with preconditioner M
is given in Figure 2.11. It handles the case of a symmetric positive de�nite coe�cient
matrix A. The eigenvalues of M�1A are assumed to be all real and in the interval
[�min; �max], which does not include zero.

30 CHAPTER 2. ITERATIVE METHODS

Compute r(0) = b �Ax(0) for some initial guess x(0).
d = (�max + �min)=2, c = (�max � �min)=2.
for i = 1; 2; : : :

solveMz(i�1) = r(i).
if i = 1

p(1) = z(0)

�1 = 2=d
else

�i�1 = �i�1(c=2)2

�i = 1=(d� �i�1)
p(i) = z(i�1) + �i�1p

(i�1).
endif

x(i) = x(i�1) + �ip
(i).

r(i) = b�Ax(i) (= r(i�1) � �iAp
(i)).

check convergence; continue if necessary
end

Figure 2.11: The Preconditioned Chebyshev Method

2.4 Computational Aspects of the Methods

E�cient solution of a linear system is largely a function of the proper choice of iterative
method. However, to obtain good performance, consideration must also be given to the
computational kernels of the method and how e�ciently they can be executed on the
target architecture. This point is of particular importance on parallel architectures;
see x4.4.

Iterative methods are very di�erent from direct methods in this respect. The
performance of direct methods, both for dense and sparse systems, is largely that of
the factorization of the matrix. This operation is absent in iterative methods (although
preconditioners may require a setup phase), and with it, iterative methods lack dense
matrix suboperations. Since such operations can be executed at very high e�ciency
on most current computer architectures, we expect a lower op rate for iterative than
for direct methods. (Dongarra and Van der Vorst [74] give some experimental results
about this, and provide a benchmark code for iterative solvers.) Furthermore, the
basic operations in iterative methods often use indirect addressing, depending on the
data structure. Such operations also have a relatively low e�ciency of execution.

However, this lower e�ciency of execution does not imply anything about the total
solution time for a given system. Furthermore, iterative methods are usually simpler
to implement than direct methods, and since no full factorization has to be stored,
they can handle much larger systems than direct methods.

In this section we summarize for each method

� Matrix properties. Not every method will work on every problem type, so knowl-
edge of matrix properties is the main criterion for selecting an iterative method.

2.4. COMPUTATIONAL ASPECTS OF THE METHODS 31

Matrix-
Inner Vector Precond

Method Product SAXPY Product Solve
JACOBI 1a

GS 1 1a

SOR 1 1a

CG 2 3 1 1
GMRES i + 1 i + 1 1 1
BiCG 2 5 1/1 1/1
QMR 2 8+4bc 1/1 1/1
CGS 2 6 2 2
Bi-CGSTAB 4 6 2 2
CHEBYSHEV 2 1 1

Table 2.1: Summary of Operations for Iteration i. \a/b" means \a" multiplications
with the matrix and \b" with its transpose.

aThis method performs no real matrix vector product or preconditioner solve, but the number of
operations is equivalent to a matrix-vector multiply.

bTrue SAXPY operations + vector scalings.
cLess for implementations that do not recursively update the residual.

� Computational kernels. Di�erent methods involve di�erent kernels, and depend-
ing on the problem or target computer architecture this may rule out certain
methods.

Table 2.2 lists the storage required for each method (without preconditioning).
Note that we are not including the storage for the original system Ax = b and we
ignore scalar storage.

1. Jacobi Method

� Extremely easy to use, but unless the matrix is \strongly" diagonally dom-
inant, this method is probably best only considered as an introduction to
iterative methods or as a preconditioner in a nonstationary method.

� Trivial to parallelize.

2. Gauss-Seidel Method

� Typically faster convergence than Jacobi, but in general not competitive
with the nonstationary methods.

� Applicable to strictly diagonally dominant, or symmetric positive de�nite
matrices.

� Parallelization properties depend on structure of the coe�cient matrix. Dif-
ferent orderings of the unknowns have di�erent degrees of parallelism;multi-
color orderings may give almost full parallelism.

� This is a special case of the SOR method, obtained by choosing ! = 1.

3. Successive Over-Relaxation (SOR)

32 CHAPTER 2. ITERATIVE METHODS

Method Storage
Reqmts

JACOBI matrix + 3n
SOR matrix + 2n
CG matrix + 6n
GMRES matrix+ (i+ 5)n
BiCG matrix + 10n
CGS matrix + 11n
Bi-CGSTAB matrix + 10n
QMR matrix+ 16nc

CHEBYSHEV matrix + 5n

Table 2.2: Storage Requirements for the Methods in iteration i: n denotes the order
of the matrix.

cLess for implementations that do not recursively update the residual.

� Accelerates convergence of Gauss-Seidel (! > 1, over-relaxation); may yield
convergence when Gauss-Seidel fails (0 < ! < 1, under-relaxation).

� Speed of convergence depends critically on !; the optimal value for ! may
be estimated from the spectral radius of the Jacobi iteration matrix under
certain conditions.

� Parallelization properties are the same as those of the Gauss-Seidel method.

4. Conjugate Gradient (CG)

� Applicable to symmetric positive de�nite systems.

� Speed of convergence depends on the condition number; if extremal eigen-
values are well-separated then superlinear convergence behavior can result.

� Inner products act as synchronization points in a parallel environment.

� Further parallel properties are largely independent of the coe�cient matrix,
but depend strongly on the structure the preconditioner.

5. Generalized Minimal Residual (GMRES)

� Applicable to nonsymmetric matrices.

� GMRES leads to the smallest residual for a �xed number of iteration steps,
but these steps become increasingly expensive.

� In order to limit the increasing storage requirements and work per iteration
step, restarting is necessary. When to do so depends on A and the right-
hand side; it requires skill and experience.

� GMRES requires only matrix-vector products with the coe�cient matrix.

� The number of inner products grows linearly with the iteration number, up
to the restart point. In an implementation based on a simple Gram-Schmidt
process the inner products are independent, so together they imply only one
synchronization point. A more stable implementation based on modi�ed
Gram-Schmidt orthogonalization has one synchronization point per inner
product.

2.4. COMPUTATIONAL ASPECTS OF THE METHODS 33

6. Biconjugate Gradient (BiCG)

� Applicable to nonsymmetric matrices.

� Requires matrix-vector products with the coe�cient matrix and its trans-
pose. This disquali�es the method for cases where the matrix is only given
implicitly as an operator, since usually no corresponding transpose operator
is available in such cases.

� Parallelization properties are similar to those for CG; the two matrix vector
products (as well as the preconditioning steps) are independent, so they can
be done in parallel, or their communication stages can be packaged.

7. Quasi-Minimal Residual (QMR)

� Applicable to nonsymmetric matrices.

� Designed to avoid the irregular convergence behavior of BiCG, it avoids one
of the two breakdown situations of BiCG.

� If BiCG makes signi�cant progress in one iteration step, then QMR delivers
about the same result at the same step. But when BiCG temporarily stag-
nates or diverges, QMR may still further reduce the residual, albeit very
slowly.

� Computational costs per iteration are similar to BiCG, but slightly higher.
The method requires the transpose matrix-vector product.

� Parallelization properties are as for BiCG.

8. Conjugate Gradient Squared (CGS)

� Applicable to nonsymmetric matrices.

� Converges (diverges) typically about twice as fast as BiCG.

� Convergence behavior is often quite irregular, which may lead to a loss of
accuracy in the updated residual.

� Computational costs per iteration are similar to BiCG, but the method
doesn't require the transpose matrix.

� Unlike BiCG, the two matrix-vector products are not independent, so the
number of synchronization points in a parallel environment is larger.

9. Biconjugate Gradient Stabilized (Bi-CGSTAB)

� Applicable to nonsymmetric matrices.

� Computational costs per iteration are similar to BiCG and CGS, but the
method doesn't require the transpose matrix.

� An alternative for CGS that avoids the irregular convergence patterns of
CGS while maintaining about the same speed of convergence; as a result
we often observe less loss of accuracy in the updated residual.

10. Chebyshev Iteration

� Applicable to nonsymmetric matrices (but presented in this book only for
the symmetric case).

34 CHAPTER 2. ITERATIVE METHODS

� This method requires some explicit knowledge of the spectrum (or �eld of
values); in the symmetric case the iteration parameters are easily obtained
from the two extremal eigenvalues, which can be estimated either directly
from the matrix, or fromapplying a few iterations of the Conjugate Gradient
Method.

� The computational structure is similar to that of CG, but there are no
synchronization points.

� The Adaptive Chebyshev method can be used in combination with methods
as CG or GMRES, to continue the iteration once suitable bounds on the
spectrum have been obtained from these methods.

Selecting the \best" method for a given class of problems is largely a matter of trial
and error. It also depends on how much storage one has available (GMRES), on the
availability of AT (BiCG and QMR), and on how expensive the matrix vector products
(and Solve steps with M) are in comparison to SAXPYs and inner products. If these
matrix vector products are relatively expensive, and if su�cient storage is available
then it may be attractive to use GMRES and delay restarting as much as possible.

Table 2.1 shows the type of operations performed per iteration. Based on the
particular problem or data structure, the user may observe that a particular operation
could be performed more e�ciently.

2.5 A short history of Krylov methods1

Methods based on orthogonalization were developed by a number of authors in the
early '50s. Lanczos' method [142] was based on two mutually orthogonal vector se-
quences, and his motivation came from eigenvalue problems. In that context, the
most prominent feature of the method is that it reduces the original matrix to tridi-
agonal form. Lanczos later applied his method to solving linear systems, in particular
symmetric ones [143]. An important property for proving convergence of the method
when solving linear systems is that the iterates are related to the initial residual by
multiplication with a polynomial in the coe�cient matrix.

The joint paper by Hestenes and Stiefel [122], after their independent discovery
of the same method, is the classical description of the conjugate gradient method for
solving linear systems. Although error-reduction properties are proved, and experi-
ments showing premature convergence are reported, the conjugate gradient method is
presented here as a direct method, rather than an iterative method.

This Hestenes/Stiefel method is closely related to a reduction of the Lanczos
method to symmetric matrices, reducing the two mutually orthogonal sequences to
one orthogonal sequence, but there is an important algorithmic di�erence. Whereas
Lanczos used three-term recurrences, the method by Hestenes and Stiefel uses coupled
two-term recurrences. By combining the two two-term recurrences (eliminating the
\search directions") the Lanczos method is obtained.

A paper by Arnoldi [6] further discusses the Lanczos biorthogonalization
method, but it also presents a new method, combining features of the Lanczos and

1For a more detailed account of the early history of CG methods, we refer the reader to Golub
and O'Leary [108] and Hestenes [123].

2.6. SURVEY OF RECENT KRYLOV METHODS 35

Hestenes/Stiefel methods. Like the Lanczos method it is applied to nonsymmetric
systems, and it does not use search directions. Like the Hestenes/Stiefel method,
it generates only one, self-orthogonal sequence. This last fact, combined with the
asymmetry of the coe�cient matrix means that the method no longer e�ects a
reduction to tridiagonal form, but instead one to upper Hessenberg form. Presented
as \minimized iterations in the Galerkin method" this algorithm has become known
as the Arnoldi algorithm.

The conjugate gradient method received little attention as a practical method
for some time, partly because of a misperceived importance of the �nite termination
property. Reid [179] pointed out that the most important application area lay in sparse
de�nite systems, and this renewed the interest in the method.

Several methods have been developed in later years that employ, most often im-
plicitly, the upper Hessenberg matrix of the Arnoldi method. For an overview and
characterization of these orthogonal projection methods for nonsymmetric systems see
Ashby, Manteu�el and Saylor [10], Saad and Schultz [188], and Jea and Young [125].

Fletcher [98] proposed an implementation of the Lanczos method, similar to the
Conjugate Gradient method, with two coupled two-term recurrences, which he named
the bi-conjugate gradient method (BiCG).

2.6 Survey of recent Krylov methods

Research into the design of Krylov subspace methods for solving nonsymmetric linear
systems is an active �eld of research and new methods are still emerging. In this book,
we have included only the best known and most popular methods, and in particular
those for which extensive computational experience has been gathered. In this section,
we shall briey highlight some of the recent developments and other methods not
treated here. A survey of methods up to about 1991 can be found in Freund, Golub
and Nachtigal [106]. Two more recent reports by Meier-Yang [151] and Tong [197]
have extensive numerical comparisons among various methods, including several more
recent ones that have not been discussed in detail in this book.

Several suggestions have been made to reduce the increase in memory and compu-
tational costs in GMRES. An obvious one is to restart (this one is included in x2.3.4):
GMRES(m). Another approach is to restrict the GMRES search to a suitable sub-
space of some higher-dimensional Krylov subspace. Methods based on this idea can be
viewed as preconditioned GMRES methods. The simplest ones exploit a �xed polyno-
mial preconditioner (see Johnson, Micchelli and Paul [126], Saad [183], and Nachtigal,
Reichel and Trefethen [159]). In more sophisticated approaches, the polynomial pre-
conditioner is adapted to the iterations (Saad [187]), or the preconditioner may even be
some other (iterative) method of choice (Van der Vorst and Vuik [209], Axelsson and
Vassilevski [24]). Stagnation is prevented in the GMRESR method (Van der Vorst and
Vuik [209]) by including LSQR steps in some phases of the process. In De Sturler and
Fokkema [64], part of the optimality of GMRES is maintained in the hybrid method
GCRO, in which the iterations of the preconditioning method are kept orthogonal to
the iterations of the underlying GCR method. All these approaches have advantages
for some problems, but it is far from clear a priori which strategy is preferable in any
given case.

Recent work has focused on endowing the BiCG method with several desirable

36 CHAPTER 2. ITERATIVE METHODS

properties: (1) avoiding breakdown; (2) avoiding use of the transpose; (3) e�cient
use of matrix-vector products; (4) smooth convergence; and (5) exploiting the work
expended in forming the Krylov space with AT for further reduction of the residual.

As discussed before, the BiCG method can have two kinds of breakdown: Lanczos
breakdown (the underlying Lanczos process breaks down), and pivot breakdown (the
tridiagonal matrix T implicitly generated in the underlying Lanczos process encounters
a zero pivot when Gaussian eliminationwithout pivoting is used to factor it). Although
such exact breakdowns are very rare in practice, near breakdowns can cause severe
numerical stability problems.

The pivot breakdown is the easier one to overcome and there have been several
approaches proposed in the literature. It should be noted that for symmetric matrices,
Lanczos breakdown cannot occur and the only possible breakdown is pivot breakdown.
The SYMMLQ and QMR methods discussed in this book circumvent pivot breakdown
by solving least squares systems. Other methods tackling this problem can be found
in Fletcher [98], Saad [181], Gutknecht [113], and Bank and Chan [28, 29].

Lanczos breakdown is much more di�cult to eliminate. Recently, considerable
attention has been given to analyzing the nature of the Lanczos breakdown (see Par-
lett [172], and Gutknecht [116, 114]), as well as various look-ahead techniques for
remedying it (see Brezinski and Sadok [39], Brezinski, Zaglia and Sadok [40, 41], Fre-
und and Nachtigal [102], Parlett [172], Nachtigal [160], Freund, Gutknecht and Nachti-
gal [101], Joubert [129], Freund, Golub and Nachtigal [106], and Gutknecht [116, 114]).
However, the resulting algorithms are usually too complicated to give in template form
(some codes of Freund and Nachtigal are available on netlib.) Moreover, it is still not
possible to eliminate breakdowns that require look-ahead steps of arbitrary size (in-
curable breakdowns). So far, these methods have not yet received much practical use
but some form of look-ahead may prove to be a crucial component in future methods.

In the BiCG method, the need for matrix-vector multiplies with AT can be in-
convenient as well as doubling the number of matrix-vector multiplies compared with
CG for each increase in the degree of the underlying Krylov subspace. Several recent
methods have been proposed to overcome this drawback. The most notable of these
is the ingenious CGS method by Sonneveld [192] discussed earlier, which computes
the square of the BiCG polynomial without requiring AT { thus obviating the need
for AT . When BiCG converges, CGS is often an attractive, faster converging alterna-
tive. However, CGS also inherits (and often magni�es) the breakdown conditions and
the irregular convergence of BiCG (see Van der Vorst [207]).

CGS also generated interest in the possibility of product methods, which generate
iterates corresponding to a product of the BiCG polynomial with another polynomial
of the same degree, chosen to have certain desirable properties but computable without
recourse to AT . The Bi-CGSTAB method of Van der Vorst [207] is such an example, in
which the auxiliary polynomial is de�ned by a local minimization chosen to smooth the
convergence behavior. Gutknecht [115] noted that Bi-CGSTAB could be viewed as a
product of BiCG and GMRES(1), and he suggested combining BiCG with GMRES(2)
for the even numbered iteration steps. This was anticipated to lead to better conver-
gence for the case where the eigenvalues of A are complex. A more e�cient and more
robust variant of this approach has been suggested by Sleijpen and Fokkema in [190],
where they describe how to easily combine BiCG with any GMRES(m), for modest m.

Many other basic methods can also be squared. For example, by squaring the
Lanczos procedure, Chan, de Pillis and Van der Vorst [45] obtained transpose-free

2.6. SURVEY OF RECENT KRYLOV METHODS 37

implementations of BiCG and QMR. By squaring the QMR method, Freund and
Szeto [104] derived a transpose-free QMR squared method which is quite competitive
with CGS but with much smoother convergence. Unfortunately, these methods require
an extra matrix-vector product per step (three instead of two) which makes them less
e�cient.

In addition to Bi-CGSTAB, several recent product methods have been designed
to smooth the convergence of CGS. One idea is to use the quasi-minimal residual
(QMR) principle to obtain smoothed iterates from the Krylov subspace generated by
other product methods. Freund [105] proposed such a QMR version of CGS, which
he called TFQMR. Numerical experiments show that TFQMR in most cases retains
the desirable convergence features of CGS while correcting its erratic behavior. The
transpose free nature of TFQMR, its low computational cost and its smooth conver-
gence behavior make it an attractive alternative to CGS. On the other hand, since
the BiCG polynomial is still used, TFQMR breaks down whenever CGS does. One
possible remedy would be to combine TFQMR with a look-ahead Lanczos technique
but this appears to be quite complicated and no methods of this kind have yet ap-
peared in the literature. Recently, Chan et. al. [46] derived a similar QMR version of
Van der Vorst's Bi-CGSTAB method, which is called QMRCGSTAB. These methods
o�er smoother convergence over CGS and Bi-CGSTAB with little additional cost.

There is no clear best Krylov subspace method at this time, and there will never be
a best overall Krylov subspace method. Each of the methods is a winner in a speci�c
problem class, and the main problem is to identify these classes and to construct new
methods for uncovered classes. The paper by Nachtigal, Reddy and Trefethen [158]
shows that for any of a group of methods (CG, BiCG, GMRES, CGNE, and CGS),
there is a class of problems for which a given method is the winner and another one is
the loser. This shows clearly that there will be no ultimate method. The best we can
hope for is some expert system that guides the user in his/her choice. Hence, iterative
methods will never reach the robustness of direct methods, nor will they beat direct
methods for all problems. For some problems, iterative schemes will be most attractive,
and for others, direct methods (or multigrid). We hope to �nd suitable methods (and
preconditioners) for classes of very large problems that we are yet unable to solve
by any known method, because of CPU-restrictions, memory, convergence problems,
ill-conditioning, et cetera.

38 CHAPTER 2. ITERATIVE METHODS

Chapter 3

Preconditioners

3.1 The why and how

The convergence rate of iterative methods depends on spectral properties of the coef-
�cient matrix. Hence one may attempt to transform the linear system into one that
is equivalent in the sense that it has the same solution, but that has more favorable
spectral properties. A preconditioner is a matrix that e�ects such a transformation.

For instance, if a matrix M approximates the coe�cient matrix A in some way,
the transformed system

M�1Ax =M�1b

has the same solution as the original system Ax = b, but the spectral properties of its
coe�cient matrix M�1A may be more favorable.

In devising a preconditioner, we are faced with a choice between �nding a matrixM
that approximatesA, and for which solving a system is easier than solving one with A,
or �nding a matrix M that approximates A�1, so that only multiplication by M is
needed. The majority of preconditioners falls in the �rst category; a notable example
of the second category will be discussed in x3.5.

3.1.1 Cost trade-o�

Since using a preconditioner in an iterative method incurs some extra cost, both ini-
tially for the setup, and per iteration for applying it, there is a trade-o� between
the cost of constructing and applying the preconditioner, and the gain in convergence
speed. Certain preconditioners need little or no construction phase at all (for in-
stance the SSOR preconditioner), but for others, such as incomplete factorizations,
there can be substantial work involved. Although the work in scalar terms may be
comparable to a single iteration, the construction of the preconditioner may not be
vectorizable/parallelizable even if application of the preconditioner is. In that case,
the initial cost has to be amortized over the iterations, or over repeated use of the
same preconditioner in multiple linear systems.

Most preconditioners take in their application an amount of work proportional to
the number of variables. This implies that they multiply the work per iteration by
a constant factor. On the other hand, the number of iterations as a function of the

39

40 CHAPTER 3. PRECONDITIONERS

matrix size is usually only improved by a constant. Certain preconditioners are able
to improve on this situation, most notably the modi�ed incomplete factorizations and
preconditioners based on multigrid techniques.

On parallel machines there is a further trade-o� between the e�cacy of a pre-
conditioner in the classical sense, and its parallel e�ciency. Many of the traditional
preconditioners have a large sequential component.

3.1.2 Left and right preconditioning

The above transformation of the linear system A ! M�1A is often not what is used
in practice. For instance, the matrix M�1A is not symmetric, so, even if A and M
are, the conjugate gradients method is not immediately applicable to this system. The
method as described in �gure 2.5 remedies this by employing the M�1-inner product
for orthogonalization of the residuals. The theory of the cg method is then applicable
again.

All cg-type methods in this book, with the exception of QMR, have been de-
rived with such a combination of preconditioned iteration matrix and correspondingly
changed inner product.

Another way of deriving the preconditioned conjugate gradients method would be
to split the preconditioner as M =M1M2 and to transform the system as

M�1
1 AM�1

2 (M2x) = M�1
1 b:

If M is symmetric and M1 = M t
2, it is obvious that we now have a method with a

symmetric iteration matrix, hence the conjugate gradients method can be applied.
Remarkably, the splitting of M is in practice not needed. By rewriting the steps

of the method (see for instance Axelsson and Barker [14, pgs. 16,29] or Golub and
Van Loan [109, x10.3]) it is usually possible to reintroduce a computational step

solve u from Mu = v;

that is, a step that applies the preconditioner in its entirety.
There is a di�erent approach to preconditioning, which is much easier to derive.

Consider again the system.

M�1
1 AM�1

2 (M2x) = M�1
1 b:

The matrices M1 and M2 are called the left- and right preconditioners, respectively,
and we can simply apply an unpreconditioned iterative method to this system. Only
two additional actions r0 M�1

1 r0 before the iterative process and xn M�1
2 xn

after are necessary.
Thus we arrive at the following schematic for deriving a left/right preconditioned

iterative method from any of the symmetrically preconditioned methods in this book.

1. Take a preconditioned iterative method, and replace every occurrence ofM by I.

2. Remove any vectors from the algorithm that have become duplicates in the
previous step.

3. Replace every occurrence of A in the method by M�1
1 AM�1

2 .

3.2. JACOBI PRECONDITIONING 41

4. After the calculation of the initial residual, add the step

r0 M�1
1 r0:

5. At the end of the method, add the step

x M�1
2 x;

where x is the �nal calculated solution.

It should be noted that such methods cannot be made to reduce to the algorithms
given in section 2.3 by such choices as M1 = M t

2 or M1 = I.

3.2 Jacobi Preconditioning

The simplest preconditioner consists of just the diagonal of the matrix:

mi;j =

�
ai;i if i = j
0 otherwise:

This is known as the (point) Jacobi preconditioner.
It is possible to use this preconditioner without using any extra storage beyond

that of the matrix itself. However, division operations are usually quite costly, so in
practice storage is allocated for the reciprocals of the matrix diagonal. This strategy
applies to many preconditioners below.

3.2.1 Block Jacobi Methods

Block versions of the Jacobi preconditioner can be derived by a partitioning of the
variables. If the index set S = f1; : : : ; ng is partitioned as S =

S
i Si with the sets Si

mutually disjoint, then

mi;j =

�
ai;j if i and j are in the same index subset
0 otherwise:

The preconditioner is now a block-diagonal matrix.
Often, natural choices for the partitioning suggest themselves:

� In problems with multiple physical variables per node, blocks can be formed by
grouping the equations per node.

� In structured matrices, such as those frompartial di�erential equations on regular
grids, a partitioning can be based on the physical domain. Examples are a
partitioning along lines in the 2D case, or planes in the 3D case. This will be
discussed further in x3.4.3.

� On parallel computers it is natural to let the partitioning coincide with the
division of variables over the processors.

42 CHAPTER 3. PRECONDITIONERS

3.2.2 Discussion

Jacobi preconditioners need very little storage, even in the block case, and they are easy
to implement. Additionally, on parallel computers they don't present any particular
problems.

On the other hand, more sophisticated preconditioners usually yield a larger
improvement.1

3.3 SSOR preconditioning

The SSOR preconditioner2 like the Jacobi preconditioner, can be derived from the
coe�cient matrix without any work.

If the original, symmetric, matrix is decomposed as

A = D + L+ LT

in its diagonal, lower, and upper triangular part, the SSOR matrix is de�ned as

M = (D + L)D�1(D + L)T ;

or, parameterized by !

M (!) =
1

2� !
(
1

!
D + L)(

1

!
D)�1(

1

!
D + L)T :

The optimal value of the ! parameter, like the parameter in the SOR method, will
reduce the number of iterations to a lower order. Speci�cally, for second order elliptic
problems a spectral condition number �(M�1

!optA) = O(
p
�(A)) is attainable (see Ax-

elsson and Barker [14, x1.4]). In practice, however, the spectral information needed to
calculate the optimal ! is prohibitively expensive to compute.

The SSOR matrix is given in factored form, so this preconditioner shares many
properties of other factorization-based methods (see below). For instance, its suitabil-
ity for vector processors or parallel architectures depends strongly on the ordering of
the variables. On the other hand, since this factorization is given a priori , there is
no possibility of breakdown as in the construction phase of incomplete factorization
methods.

1Under certain conditions, one can show that the point Jacobi algorithm is optimal, or close to
optimal, in the sense of reducing the condition number, among all preconditioners of diagonal form.
This was shown by Forsythe and Strauss for matrices with Property A [99], and by van der Sluis [198]
for general sparse matrices. For extensions to block Jacobi preconditioners, see Demmel [66] and
Elsner [95].

2The SOR and Gauss-Seidel matrices are never used as preconditioners, for a rather technical
reason. SOR-preconditioning with optimal ! maps the eigenvalues of the coe�cient matrix to a circle
in the complex plane; see Hageman and Young [120, x9.3]. In this case no polynomial acceleration
is possible, i.e., the accelerating polynomial reduces to the trivial polynomial Pn(x) = xn, and the
resulting method is simply the stationary SOR method. Recent research by Eiermann and Varga [84]
has shown that polynomial acceleration of SOR with suboptimal ! will yield no improvement over
simple SOR with optimal !.

3.4. INCOMPLETE FACTORIZATION PRECONDITIONERS 43

3.4 Incomplete Factorization Preconditioners

A broad class of preconditioners is based on incomplete factorizations of the coe�cient
matrix. We call a factorization incomplete if during the factorization process certain
�ll elements, nonzero elements in the factorization in positions where the original
matrix had a zero, have been ignored. Such a preconditioner is then given in factored
formM = LU with L lower and U upper triangular. The e�cacy of the preconditioner
depends on how well M�1 approximates A�1.

3.4.1 Creating an incomplete factorization

Incomplete factorizations are the �rst preconditioners we have encountered so far for
which there is a non-trivial creation stage. Incomplete factorizations may break down
(attempted division by zero pivot) or result in inde�nite matrices (negative pivots)
even if the full factorization of the same matrix is guaranteed to exist and yield a
positive de�nite matrix.

An incomplete factorization is guaranteed to exist for many factorization strategies
if the original matrix is an M -matrix. This was originally proved by Meijerink and
Van der Vorst [152]; see further Beauwens and Quenon [33], Manteu�el [147], and
Van der Vorst [200].

In cases where pivots are zero or negative, strategies have been proposed such
as substituting an arbitrary positive number (see Kershaw [132]), or restarting the
factorization on A+ �I for some positive value of � (see Manteu�el [147]).

An important consideration for incomplete factorization preconditioners is the cost
of the factorization process. Even if the incomplete factorization exists, the number
of operations involved in creating it is at least as much as for solving a system with
such a coe�cient matrix, so the cost may equal that of one or more iterations of the
iterative method. On parallel computers this problem is aggravated by the generally
poor parallel e�ciency of the factorization.

Such factorization costs can be amortized if the iterative method takes many itera-
tions, or if the same preconditioner will be used for several linear systems, for instance
in successive time steps or Newton iterations.

Solving a system with an incomplete factorization preconditioner

Incomplete factorizations can be given in various forms. If M = LU (with L and U
nonsingular triangular matrices), solving a system proceeds in the usual way (�g-
ure 3.1), but often incomplete factorizations are given as M = (D + L)D�1(D + U)
(with D diagonal, and L and U now strictly triangular matrices, determined through
the factorization process). In that case, one could use either of the following equivalent
formulations for Mx = y:

(D + L)z = y; (I +D�1U)x = z

or

(I + LD�1)z = y; (D + U)x = z:

In either case, the diagonal elements are used twice (not three times as the formula
for M would lead one to expect), and since only divisions with D are performed,

44 CHAPTER 3. PRECONDITIONERS

Let M = LU and y be given.
for i = 1; 2; : : :

zi = `�1ii (yi �
P

j<i `ijzj)

for i = n; n� 1; n� 2; : : :
xi = u�1ii (zi �

P
j>i uijxj)

Figure 3.1: Preconditioner solve of a system Mx = y, with M = LU

Let M = (D + L)(I +D�1U) and y be given.
for i = 1; 2; : : :

zi = d�1ii (yi �
P

j<i `ijzj)
for i = n; n� 1; n� 2; : : :

xi = zi � d�1ii
P

j>i uijxj

Figure 3.2: Preconditioner solve of a systemMx = y, withM = (D+L)D�1(D+U) =
(D + L)(I +D�1U).

storing D�1 explicitly is the practical thing to do. At the cost of some extra storage,
one could store LD�1 or D�1U , thereby saving some computation. Solving a system
using the �rst formulation is outlined in �gure 3.2. The second formulation is slightly
harder to implement.

3.4.2 Point incomplete factorizations

The most common type of incomplete factorization is based on taking a set S of matrix
positions, and keeping all positions outside this set equal to zero during the factoriza-
tion. The resulting factorization is incomplete in the sense that �ll is suppressed.

The set S is usually chosen to encompass all positions (i; j) for which ai;j 6= 0.
A position that is zero in A but not so in an exact factorization3 is called a �ll position,
and if it is outside S, the �ll there is said to be \discarded". Often, S is chosen to
coincide with the set of nonzero positions in A, discarding all �ll. This factorization
type is called the ILU (0) factorization: the Incomplete LU factorization of level zero4.

3To be precise, if we make an incomplete factorizationM = LU , we refer to positions in L and U

when we talk of positions in the factorization. The matrixM will have more nonzeros than L and U
combined.

4The zero refers to the fact that only \level zero" �ll is permitted, that is, nonzero elements of the
original matrix. Fill levels are de�ned by calling an element of level k + 1 if it is caused by elements
at least one of which is of level k. The �rst �ll level is that caused by the original matrix elements.

3.4. INCOMPLETE FACTORIZATION PRECONDITIONERS 45

We can describe an incomplete factorization formally as

for each k, i; j > k: ai;j
�

ai;j � ai;ka
�1
k;kak;j if (i; j) 2 S

ai;j otherwise:

Meijerink and Van der Vorst [152] proved that, ifA is anM -matrix, such a factorization
exists for any choice of S, and gives a symmetric positive de�nite matrix if A is
symmetric positive de�nite. Guidelines for allowing levels of �ll were given by Meijerink
and Van der Vorst in [153].

Fill-in strategies

There are two major strategies for accepting or discarding �ll-in, one structural, and
one numerical. The structural strategy is that of accepting �ll-in only to a certain
level. As was already pointed out above, any zero location (i; j) in A �lling in (say in
step k) is assigned a �ll level value

�ll(i; j) = 1 +maxf�ll(i; k); �ll(k; i)g: (3.1)

If aij was already nonzero, the level value is not changed.
The numerical �ll strategy is that of `drop tolerances': �ll is ignored if it is too

small, for a suitable de�nition of `small'. Although this de�nition makes more sense
mathematically, it is harder to implement in practice, since the amount of storage
needed for the factorization is not easy to predict. See [20, 157] for discussions of
preconditioners using drop tolerances.

Simple cases: ILU (0) and D-ILU

For the ILU (0) method, the incomplete factorization produces no nonzero elements
beyond the sparsity structure of the original matrix, so that the preconditioner at
worst takes exactly as much space to store as the original matrix. In a simpli�ed
version of ILU (0), called D-ILU (Pommerell [174]), even less is needed. If not only
we prohibit �ll-in elements, but we also alter only the diagonal elements (that is, any
alterations of o�-diagonal elements are ignored5), we have the following situation.

Splitting the coe�cient matrix into its diagonal, lower triangular, and upper trian-
gular parts as A = DA+LA+UA, the preconditioner can be written asM = (D+LA)
D�1(D+UA) where D is the diagonal matrix containing the pivots generated. Gener-
ating this preconditioner is described in �gure 3.3. Since we use the upper and lower
triangle of the matrix unchanged, only storage space for D is needed. In fact, in order
to avoid division operations during the preconditioner solve stage we store D�1 rather
than D.

Remark: the resulting lower and upper factors of the preconditioner have only
nonzero elements in the set S, but this fact is in general not true for the precondi-
tioner M itself.

The fact that the D-ILU preconditioner contains the o�-diagonal parts of the orig-
inal matrix was used by Eisenstat [91] to derive at a more e�cient implementation of
preconditioned CG. This new implementation merges the application of the tridiago-
nal factors of the matrix and the preconditioner, thereby saving a substantial number
of operations per iteration.

5In graph theoretical terms, ILU(0) andD-ILU coincide if the matrix graph contains no triangles.

46 CHAPTER 3. PRECONDITIONERS

Let S be the nonzero set f(i; j): aij 6= 0g
for i = 1; 2; : : :

set dii aii
for i = 1; 2; : : :

set dii 1=dii
for j = i+ 1; i+ 2; : : :

if (i; j) 2 S and (j; i) 2 S then
set djj djj � ajidiiaij

Figure 3.3: Construction of a D-ILU incomplete factorization preconditioner, storing
the inverses of the pivots

Special cases: central di�erences

We will now consider the special case of a matrix derived from central di�erences on
a Cartesian product grid. In this case the ILU (0) and D-ILU factorizations coincide,
and, as remarked above, we only have to calculate the pivots of the factorization; other
elements in the triangular factors are equal to o�-diagonal elements of A.

In the following we will assume a natural, line-by-line, ordering of the grid points.
Letting i,j be coordinates in a regular 2D grid, it is easy to see that the pivot on

grid point (i; j) is only determined by pivots on points (i� 1; j) and (i; j� 1). If there
are n points on each of m grid lines, we get the following generating relations for the
pivots:

di;i =

8>>>><>>>>:
a1;1 if i = 1
ai;i � ai;i�1d

�1
i�1ai�1;i if 1 < i � n

ai;i � ai;i�nd
�1
i�nai�n;i if i = kn + 1 with k � 1

ai;i � ai;i�1d
�1
i�1ai�1;i

� ai;i�nd
�1
i�nai�n;i

otherwise:

Conversely, we can describe the factorization algorithmically as

Initially: di;i = ai;i for all i
for i = 1::nm do:8<:

di+1;i+1 = di+1;i+1 � ai+1;id
�1
i;i ai;i+1 if there is no k

such that i = kn
di+n;i+n = di+n;i+n � ai+n;id

�1
i;i ai;i+n if i+ n � nm

In the above we have assumed that the variables in the problem are ordered ac-
cording to the so-called \natural ordering": a sequential numbering of the grid lines
and the points within each grid line. Below we will encounter di�erent orderings of
the variables.

Modi�ed incomplete factorizations

One modi�cation to the basic idea of incomplete factorizations is as follows: If the
product ai;ka

�1
k;kak;j is nonzero, and �ll is not allowed in position (i; j), instead of

3.4. INCOMPLETE FACTORIZATION PRECONDITIONERS 47

simply discarding this �ll quantity subtract it from the diagonal element ai;i. Such a
factorization scheme is usually called a \modi�ed incomplete factorization".

Mathematically this corresponds to forcing the preconditioner to have the same
rowsums as the original matrix. One reason for considering modi�ed incomplete fac-
torizations is the behavior of the spectral condition number of the preconditioned
system. It was mentioned above that for second order elliptic equations the condition
number of the coe�cient matrix is O(h�2) as a function of the discretization mesh
width. This order of magnitude is preserved by simple incomplete factorizations, al-
though usually a reduction by a large constant factor is obtained.

Modi�ed factorizations are of interest because, in combination with small pertur-
bations, the spectral condition number of the preconditioned system can be of a lower
order. It was �rst proved by Dupont, Kendall and Rachford [81] that a modi�ed
incomplete factorization of A + O(h2)DA gives �(M�1A) = O(h�1) for the central
di�erence case. More general proofs are given by Gustafsson [112], Axelsson and
Barker [14, x7.2], and Beauwens [31, 32].

Instead of keeping row sums constant, one can also keep column sums constant.
In computational uid mechanics this idea is justi�ed with the argument that the
material balance stays constant over all iterates. (Equivalently, one wishes to avoid
`arti�cial di�usion'.) Appleyard and Cheshire [4] observed that if A and M have the
same column sums, the choice

x0 =M�1b

guarantees that the sum of the elements in r0 (the material balance error) is zero, and
that all further ri have elements summing to zero.

Modi�ed incomplete factorizations can break down, especially when the variables
are numbered other than in the natural row-by-row ordering. This was noted by Chan
and Kuo [50], and a full analysis was given by Eijkhout [86] and Notay [161].

A slight variant of modi�ed incomplete factorizations consists of the class of \re-
laxed incomplete factorizations". Here the �ll is multiplied by a parameter 0 <
� < 1 before it is subtracted from the diagonal; see Ashcraft and Grimes [11], Ax-
elsson and Lindskog [18, 19], Chan [44], Eijkhout [86], Notay [162], Stone [194], and
Van der Vorst [204]. For the dangers of MILU in the presence of rounding error, see
Van der Vorst [206].

Vectorization of the preconditioner solve

At �rst it may appear that the sequential time of solving a factorization is of the order
of the number of variables, but things are not quite that bad. Consider the special
case of central di�erences on a regular domain of n� n points. The variables on any
diagonal in the domain, that is, in locations (i; j) with i+ j = k, depend only on those
on the previous diagonal, that is, with i+ j = k�1. Therefore it is possible to process
the operations on such a diagonal, or `wavefront', in parallel (see �gure 3.4), or have
a vector computer pipeline them; see Van der Vorst [203, 205].

Another way of vectorizing the solution of the triangular factors is to use some form
of expansion of the inverses of the factors. Consider for a moment a lower triangular
matrix, normalized to the form I �L where L is strictly lower triangular). Its inverse

48 CHAPTER 3. PRECONDITIONERS

for k = 1; : : : ; 2n� 1
do in parallel for i = max(1; k+ 1� n);min(n; k)

j = k � i+ 1
xi+(j�1)n Di+(j�1)nyi+(j�1)n

�Li+(j�1)ni� 1 + (j � 1)nxi�1+(j�1)n
�Li+(j�1)ni+ (j � 2)nxi+(j�2)n

Figure 3.4: Wavefront solution of (D + L)x = u from a central di�erence problem on
a domain of n � n points.

can be given as either of the following two series:

(I � L)�1 =

�
I + L+ L2 + L3 + � � �
(I + L)(I + L2)(I + L4) � � � (3.2)

(The �rst series is called a \Neumann expansion", the second an \Euler expansion".
Both series are �nite, but their length prohibits practical use of this fact.) Parallel or
vectorizable preconditioners can be derived from an incomplete factorization by taking
a small number of terms in either series. Experiments indicate that a small number of
terms, while giving high execution rates, yields almost the full precision of the more
recursive triangular solution (see Axelsson and Eijkhout [15] and Van der Vorst [201]).

There are some practical considerations in implementing these expansion algo-
rithms. For instance, because of the normalization the L in equation (3.2) is not LA.
Rather, if we have a preconditioner (as described in section 3.4.2) described by

A = DA + LA + UA; M = (D + LA)D
�1(D + UA);

then we write

M = (I + L)D(I + U); where L = LAD
�1, U = D�1UA:

Now we can choose whether or not to store the product LAD�1. Doing so doubles the
storage requirements for the matrix, not doing so means that separate multiplications
by LA and D�1 have to be performed in the expansion.

Suppose then that the products L = LAD
�1 and U = D�1UA have been stored.

We then de�ne M (p) �M�1 by

M (p) =

pX
k=0

(�U)pD�1
pX

k=0

(�L)p; (3.3)

and replace solving a system Mx = y for x by computing x = M (p)y. This algorithm
is given in �gure 3.5.

Parallelizing the preconditioner solve

The algorithms for vectorization outlined above can be used on parallel computers.
For instance, variables on a wavefront can be processed in parallel, by dividing the

3.4. INCOMPLETE FACTORIZATION PRECONDITIONERS 49

Let M = (I + L)D(I + U) and y be given.
t y
for k = 1; : : : ; p

t y � Lt
x D�1t, t x
for k = 1; : : : ; p

x t� Ux

Figure 3.5: Preconditioning step algorithm for a Neumann expansion M (p) � M�1 of
an incomplete factorization M = (I + L)D(I + U).

wavefront over processors. More radical approaches for increasing the parallelism in
incomplete factorizations are based on a renumbering of the problem variables. For
instance, on rectangular domains one could start numbering the variables from all four
corners simultaneously, thereby creating four simultaneous wavefronts, and therefore
four-fold parallelism (see Dongarra, et al. [71], Van der Vorst [202, 204]). The most
extreme case is the red/black ordering (or for more general matrices the multi-color
ordering) which gives the absolute minimum number of sequential steps.

Multi-coloring is also an attractive method for vector computers. Since points
of one color are uncoupled, they can be processed as one vector; see Doi [68], Mel-
hem [154], and Poole and Ortega [176].

However, for such ordering strategies there is usually a trade-o� between the degree
of parallelism and the resulting number of iterations. The reason for this is that a
di�erent ordering may give rise to a di�erent error matrix, in particular the norm of
the error matrix may vary considerably between orderings. See experimental results
by Du� and Meurant [79] and a partial explanation of them by Eijkhout [85].

3.4.3 Block factorization methods

We can also consider block variants of preconditioners for accelerated methods. Block
methods are normally feasible if the problem domain is a Cartesian product grid; in
that case a natural division in lines (or planes in the 3-dimensional case), can be used
for blocking, though incomplete factorizations are not as e�ective in the 3-dimensional
case; see for instance Kettler [134]. In such a blocking scheme for Cartesian product
grids, both the size and number of the blocks increases with the overall problem size.

The idea behind block factorizations

The starting point for an incomplete block factorization is a partitioning of the matrix,
as mentioned in x3.2.1. Then an incomplete factorization is performed using the matrix
blocks as basic entities (see Axelsson [12] and Concus, Golub and Meurant [57] as basic
references).

The most important di�erence with point methods arises in the inversion of the
pivot blocks. Whereas inverting a scalar is easily done, in the block case two problems

50 CHAPTER 3. PRECONDITIONERS

for i = 1; 2; : : :
Xi Aii

for i = 1; 2; : : :
Let Yi � X�1

i

for j = i + 1; i+ 2; : : :
if Aij 6= 0 and Aji 6= 0,
then Xj Xj �AjiYiAij

Figure 3.6: Block version of a D-ILU factorization

Let X be a banded matrix,
factor X = (I + L)D�1(I + U),
let Y = (I � U)D(I � L)

Figure 3.7: Algorithm for approximating the inverse of a banded matrix

arise. First, inverting the pivot block is likely to be a costly operation. Second,
initially the diagonal blocks of the matrix are likely to be be sparse and we would like
to maintain this type of structure throughout the factorization. Hence the need for
approximations of inverses arises.

In addition to this, often �ll-in in o�-diagonal blocks is discarded altogether. Fig-
ure 3.6 describes an incomplete block factorization that is analogous to the D-ILU
factorization (section 3.4.2) in that it only updates the diagonal blocks.

As in the case of incomplete point factorizations, the existence of incomplete block
methods is guaranteed if the coe�cient matrix is an M -matrix. For a general proof,
see Axelsson [13].

Approximate inverses

In block factorizations a pivot block is generally forced to be sparse, typically of
banded form, and that we need an approximation to its inverse that has a similar
structure. Furthermore, this approximation should be easily computable, so we rule
out the option of calculating the full inverse and taking a banded part of it.

The simplest approximation to A�1 is the diagonal matrix D of the reciprocals of
the diagonal of A: di;i = 1=ai;i.

Other possibilities were considered by Axelsson and Eijkhout [15], Axelsson and
Polman [21], Concus, Golub and Meurant [57], Eijkhout and Vassilevski [90], Kolotilina
and Yeremin [141], and Meurant [155]. One particular example is given in �gure 3.7. It
has the attractive theoretical property that, if the original matrix is symmetric positive
de�nite and a factorization with positive diagonal D can be made, the approximation
to the inverse is again symmetric positive de�nite.

3.4. INCOMPLETE FACTORIZATION PRECONDITIONERS 51

X1 = A1;1

for i � 1
let Yi � X�1

i

Xi+1 = Ai+1;i+1 � Ai+1;iYiAi;i+1

Figure 3.8: Incomplete block factorization of a block tridiagonal matrix

Banded approximations to the inverse of banded matrices have a theoretical jus-
ti�cation. In the context of partial di�erential equations the diagonal blocks of the
coe�cient matrix are usually strongly diagonally dominant. For such matrices, the
elements of the inverse have a size that is exponentially decreasing in their distance
from the main diagonal. See Demko, Moss and Smith [65] for a general proof, and
Eijkhout and Polman [89] for a more detailed analysis in the M -matrix case.

The special case of block tridiagonality

In many applications, a block tridiagonal structure can be found in the coe�cient
matrix. Examples are problems on a 2D regular grid if the blocks correspond to lines
of grid points, and problems on a regular 3D grid, if the blocks correspond to planes
of grid points. Even if such a block tridiagonal structure does not arise naturally, it
can be imposed by renumbering the variables in a Cuthill-McKee ordering [60].

Such a matrix has incomplete block factorizations of a particularly simple nature:
since no �ll can occur outside the diagonal blocks (Ai;i), all properties follow from
our treatment of the pivot blocks. The generating recurrence for the pivot blocks also
takes a simple form, see �gure 3.8. After the factorization we are left with sequences
of Xi block forming the pivots, and of Yi blocks approximating their inverses.

Two types of incomplete block factorizations

One reason that block methods are of interest is that they are potentially more suitable
for vector computers and parallel architectures. Consider the block factorization

A = (D + L)D�1(D + U) = (D + L)(I +D�1U)

where D is the block diagonal matrix of pivot blocks,6 and L, U are the block lower
and upper triangle of the factorization; they coincide with LA, UQ in the case of a
block tridiagonal matrix.

We can turn this into an incomplete factorization by replacing the block diagonal
matrix of pivotsD by the block diagonal matrix of incomplete factorization pivotsX =
diag(Xi), giving

M = (X + L)(I +X�1U)

For factorizations of this type (which covers all methods in Concus, Golub and Meu-
rant [57] and Kolotilina and Yeremin [141]) solving a linear system means solving
smaller systems with the Xi matrices.

6Writing (I + LAD
�1)(D+ UA) is equally valid, but in practice harder to implement.

52 CHAPTER 3. PRECONDITIONERS

Alternatively, we can replace D by a the inverse of the block diagonal matrix of
the approximations to the inverses of the pivots, Y = diag(Yi), giving

M = (Y �1 + L)(I + Y U):

For this second type (which was discussed by Meurant [155], Axelsson and Polman [21]
and Axelsson and Eijkhout [15]) solving a system with M entails multiplying by the
Yi blocks. Therefore, the second type has a much higher potential for vectorizability.
Unfortunately, such a factorization is theoretically more troublesome; see the above
references or Eijkhout and Vassilevski [90].

3.4.4 Blocking over systems of partial di�erential equations

If the physical problem has several variables per grid point, that is, if there are several
coupled partial di�erential equations, it is possible to introduce blocking in a natural
way.

Blocking of the equations (which gives a small number of very large blocks) was
used by Axelsson and Gustafsson [17] for the equations of linear elasticity, and blocking
of the variables per node (which gives many very small blocks) was used by Aarden
and Karlsson [1] for the semiconductor equations. A systematic comparison of the two
approaches was made by Bank, et al. [26].

3.4.5 Incomplete LQ factorizations

Saad [184] proposes to construct an incomplete LQ factorization of a general sparse
matrix. The idea is to orthogonalize the rows of the matrix by a Gram-Schmidt
process (note that in sparse matrices, most rows are typically orthogonal already, so
that standard Gram-Schmidt may be not so bad as in general). Saad suggest dropping
strategies for the �ll-in produced in the orthogonalization process. It turns out that
the resulting incomplete L factor can be viewed as the incomplete Cholesky factor of
the matrix AAT . Experiments show that using L in a CG process for the normal
equations: L�1AATL�T y = b is e�ective for some relevant problems.

3.5 Polynomial preconditioners

So far, we have described preconditioners in only one of two classes: those that ap-
proximate the coe�cient matrix, and where linear systems with the preconditioner as
coe�cient matrix are easier to solve than the original system. Polynomial precondi-
tioners can be considered as members of the second class of preconditioners: direct
approximations of the inverse of the coe�cient matrix.

Suppose that the coe�cient matrixA of the linear system is normalized to the form
A = I�B, and that the spectral radius ofB is less than one. Using the Neumann series,
we can write the inverse of A as A�1 =

P1
k=0B

k, so an approximationmay be derived
by truncating this in�nite series. Since the iterative methods we are considering are
already based on the idea of applying polynomials in the coe�cient matrix to the initial
residual, there are analytic connections between the basic method and polynomially
accelerated one.

3.6. OTHER PRECONDITIONERS 53

Dubois, Greenbaum and Rodrigue [77] investigated the relationship between a basic
method using a splitting A = M�N , and a polynomially preconditioned method with

M�1
p = (

p�1X
i=0

(I �M�1A)i)M�1:

The basic result is that for classical methods, k steps of the polynomially precondi-
tioned method are exactly equivalent to kp steps of the original method; for accelerated
methods, speci�cally the Chebyshev method, the preconditioned iteration can improve
the number of iterations by at most a factor of p.

Although there is no gain in the number of times the coe�cient matrix is applied,
polynomial preconditioning does eliminate a large fraction of the inner products and
update operations, so there may be an overall increase in e�ciency.

Let us de�ne a polynomial preconditioner more abstractly as any polynomialM =
Pn(A) normalized to P (0) = 1. Now the choice of the best polynomial preconditioner
becomes that of choosing the best polynomial that minimizes kI �M�1Ak. For the
choice of the in�nity norm we thus obtain Chebyshev polynomials, and they require
estimates of both a lower and upper bound on the spectrum of A. These estimates
may be derived from the conjugate gradient iteration itself; see x5.1.

Since an accurate lower bound on the spectrum of A may be hard to obtain,
Johnson, Micchelli and Paul [126] and Saad [183] propose least squares polynomials
based on several weight functions. These functions only require an upper bound and
this is easily computed, using for instance the \Gerschgorin bound" maxi

P
j jAi;jj;

see [211, x1.4]. Experiments comparing Chebyshev and least squares polynomials can
be found in Ashby, Manteu�el and Otto [8].

Application of polynomial preconditioning to symmetric inde�nite problems is de-
scribed by Ashby, Manteu�el and Saylor [9]. There the polynomial is chosen so that
it transforms the system into a de�nite one.

3.6 Preconditioners from properties of the di�er-

ential equation

A number of preconditioners exist that derive their justi�cation from properties of the
underlying partial di�erential equation. We will cover some of them here (see also x5.5
and x5.4). These preconditioners usually involve more work than the types discussed
above, however, they allow for specialized faster solution methods.

3.6.1 Preconditioning by the symmetric part

In x2.3.4 we pointed out that conjugate gradient methods for non-selfadjoint systems
require the storage of previously calculated vectors. Therefore it is somewhat re-
markable that preconditioning by the symmetric part (A + AT)=2 of the coe�cient
matrix A leads to a method that does not need this extended storage. Such a method
was proposed by Concus and Golub [56] and Widlund [216].

However, solving a system with the symmetric part of a matrix may be no easier
than solving a system with the full matrix. This problemmay be tackled by imposing a
nested iterative method, where a preconditioner based on the symmetric part is used.

54 CHAPTER 3. PRECONDITIONERS

Vassilevski [212] proved that the e�ciency of this preconditioner for the symmetric
part carries over to the outer method.

3.6.2 The use of fast solvers

In many applications, the coe�cient matrix is symmetric and positive de�nite. The
reason for this is usually that the partial di�erential operator from which it is derived
is self-adjoint, coercive, and bounded (see Axelsson and Barker [14, x3.2]). It follows
that for the coe�cient matrix A the following relation holds for any matrix B from a
similar di�erential equation:

c1 � xTAx

xTBx
� c2 for all x;

where c1, c2 do not depend on the matrix size. The importance of this is that the use
of B as a preconditioner gives an iterative method with a number of iterations that
does not depend on the matrix size.

Thus we can precondition our original matrix by one derived from a di�erent PDE,
if one can be found that has attractive properties as preconditioner. The most common
choice is to take a matrix from a separable PDE. A system involving such a matrix can
be solved with various so-called \fast solvers", such as FFT methods, cyclic reduction,
or the generalized marching algorithm (see Dorr [75], Swarztrauber [195], Bank [25]
and Bank and Rose [27]).

As a simplest example, any elliptic operator can be preconditioned with the Poisson
operator, giving the iterative method

��(un+1 � un) = �(Lun � f):

In Concus and Golub [59] a transformation of this method is considered to speed up
the convergence. As another example, if the original matrix arises from

�(a(x; y)ux)x � (b(x; y)uy)y = f;

the preconditioner can be formed from

�(~a(x)ux)x � (~b(y)uy)y = f:

An extension to the non-self adjoint case is considered by Elman and Schultz [94].
Fast solvers are attractive in that the number of operations they require is (slightly

higher than) of the order of the number of variables. Coupled with the fact that the
number of iterations in the resulting preconditioned iterative methods is independent
of the matrix size, such methods are close to optimal. However, fast solvers are usu-
ally only applicable if the physical domain is a rectangle or other Cartesian product
structure. (For a domain consisting of a number of such pieces, domain decomposition
methods can be used; see x5.4).

3.6.3 Alternating Direction Implicit methods

The Poisson di�erential operator can be split in a natural way as the sum of two
operators:

L = L1 + L2; where L1 = � @2

@x2 , L2 = � @2

@y2 :

3.6. OTHER PRECONDITIONERS 55

Now let L1, L2 be discretized representations of L1, L2. Based on the observation that
L1 + L2 = (I + L1)(I + L2) � I � L1L2, iterative schemes such as

(1 + �L1)(1 + �L2)u
(m+1) = [(1 + �L1)(1 + �L2)]u

(m)

with suitable choices of � and � have been proposed.
This alternating direction implicit, or ADI, method was �rst proposed as a solution

method for parabolic equations. The u(m) are then approximations on subsequent time
steps. However, it can also be used for the steady state, that is, for solving elliptic
equations. In that case, the u(m) become subsequent iterates; see D'Yakonov [82],
Fairweather, Gourlay and Mitchell [97], Hadjidimos [119], and Peaceman and Rach-
ford [173]. Generalization of this scheme to variable coe�cients or fourth order elliptic
problems is relatively straightforward.

The above method is implicit since it requires systems solutions, and it alternates
the x and y (and if necessary z) directions. It is attractive from a practical point of view
(although mostly on tensor product grids), since solving a system with, for instance,
a matrix I + �L1 entails only a number of uncoupled tridiagonal solutions. These
need very little storage over that needed for the matrix, and they can be executed in
parallel, or one can vectorize over them.

A theoretical reason that ADI preconditioners are of interest is that they can be
shown to be spectrally equivalent to the original coe�cient matrix. Hence the number
of iterations is bounded independent of the condition number.

However, there is a problem of data distribution. For vector computers, either
the system solution with L1 or with L2 will involve very large strides: if columns of
variables in the grid are stored contiguously, only the solution with L1 will involve
contiguous data. For the L2 the stride equals the number of variables in a column.

On parallel machines an e�cient solution is possible if the processors are arranged in
a Px�Py grid. During, e.g., the L1 solve, every processor row then works independently
of other rows. Inside each row, the processors can work together, for instance using
a Schur complement method. With su�cient network bandwidth this will essentially
reduce the time to that for solving any of the subdomain systems plus the time for
the interface system. Thus, this method will be close to optimal.

56 CHAPTER 3. PRECONDITIONERS

Chapter 4

Related Issues

4.1 Complex Systems

Conjugate gradient methods for real symmetric systems can be applied to complex
Hermitian systems in a straightforward manner. For non-Hermitian complex systems
we distinguish two cases. In general, for any coe�cient matrix a CGNE method is
possible, that is, a conjugate gradients method on the normal equations AHAx = AHb,
or one can split the system into real and complex parts and use a method such as
GMRES on the resulting real nonsymmetric system. However, in certain practical
situations the complex system is non-Hermitian but symmetric.

Complex symmetric systems can be solved by a classical conjugate gradient or
Lanczos method, that is, with short recurrences, if the complex inner product (x; y) =
�xTy is replaced by (x; y) = xTy. Like the BiConjugate Gradient method, this method
is susceptible to breakdown, that is, it can happen that xTx = 0 for x 6= 0. A look-
ahead strategy can remedy this in most cases (see Freund [100] and Van der Vorst and
Melissen [208]).

4.2 Stopping Criteria

An iterative method produces a sequence fx(i)g of vectors converging to the vector x
satisfying the n � n system Ax = b. To be e�ective, a method must decide when to
stop. A good stopping criterion should

1. identify when the error e(i) � x(i) � x is small enough to stop,

2. stop if the error is no longer decreasing or decreasing too slowly, and

3. limit the maximum amount of time spent iterating.

For the user wishing to read as little as possible, the following simple stopping
criterion will likely be adequate. The user must supply the quantities maxit, kbk,
stop tol, and preferably also kAk:

� The integer maxit is the maximum number of iterations the algorithm will be
permitted to perform.

57

58 CHAPTER 4. RELATED ISSUES

� The real number kAk is a norm of A. Any reasonable (order of magnitude)
approximation of the absolute value of the largest entry of the matrix A will do.

� The real number kbk is a norm of b. Again, any reasonable approximation of the
absolute value of the largest entry of b will do.

� The real number stop tol measures how small the user wants the residual r(i) =
Ax(i) � b of the ultimate solution x(i) to be. One way to choose stop tol is as
the approximate uncertainty in the entries of A and b relative to kAk and kbk,
respectively. For example, choosing stop tol 10�6 means that the user considers
the entries of A and b to have errors in the range �10�6kAk and �10�6kbk,
respectively. The algorithm will compute x no more accurately than its inherent
uncertainty warrants. The user should choose stop tol less than one and greater
than the machine precision ".1

Here is the algorithm:

i = 0
repeat

i = i + 1
Compute the approximate solution x(i).
Compute the residual r(i) = Ax(i) � b.
Compute kr(i)k and kx(i)k.

until i � maxit or kr(i)k � stop tol � (kAk � kx(i)k+ kbk).

Note that if x(i) does not change much from step to step, which occurs near con-
vergence, then kx(i)k need not be recomputed. If kAk is not available, the stopping
criterion may be replaced with the generally stricter criterion

until i � maxit or kr(i)k � stop tol � kbk :

In either case, the �nal error bound is ke(i)k � kA�1k � kr(i)k. If an estimate of
kA�1k is available, one may also use the stopping criterion

until i � maxit or kr(i)k � stop tol � kx(i)k=kA�1k ;

which guarantees that the relative error ke(i)k=kx(i)k in the computed solution is
bounded by stop tol.

4.2.1 More Details about Stopping Criteria

Ideally we would like to stop when the magnitudes of entries of the error e(i) = x(i)�x
fall below a user-supplied threshold. But e(i) is hard to estimate directly, so we use
the residual r(i) = Ax(i)� b instead, which is more readily computed. The rest of this
section describes how to measure the sizes of vectors e(i) and r(i), and how to bound
e(i) in terms of r(i).

1On a machine with IEEE Standard Floating Point Arithmetic, " = 2�24 � 10�7 in single
precision, and " = 2�53 � 10�16 in double precision.

4.2. STOPPING CRITERIA 59

We will measure errors using vector and matrix norms. The most common vector
norms are:

kxk1 � maxj jxjj ;
kxk1 � P

j jxjj ; and
kxk2 � (

P
j jxjj2)1=2 :

For some algorithms we may also use the norm kxkB;� � kBxk�, where B is a �xed
nonsingular matrix and � is one of 1, 1, or 2. Corresponding to these vector norms
are three matrix norms:

kAk1 � maxj
P

k jaj;kj ;
kAk1 � maxk

P
j jaj;kj ; and

kAkF � (
P

jk jaj;kj2)1=2 ;

as well as kAkB;� � kBAB�1k�. We may also use the matrix norm kAk2 =
(�max(AAT))1=2, where �max denotes the largest eigenvalue. Henceforth kxk and kAk
will refer to any mutually consistent pair of the above. (kxk2 and kAkF , as well
as kxk2 and kAk2, both form mutually consistent pairs.) All these norms satisfy
the triangle inequality kx + yk � kxk + kyk and kA + Bk � kAk + kBk, as well as
kAxk � kAk � kxk for mutually consistent pairs. (For more details on the properties
of norms, see Golub and Van Loan [109].)

One di�erence between these norms is their dependence on dimension. A vector x
of length n with entries uniformly distributed between 0 and 1 will satisfy kxk1 � 1,
but kxk2 will grow like

p
n and kxk1 will grow like n. Therefore a stopping criterion

based on kxk1 (or kxk2) may have to be permitted to grow proportional to n (or
p
n)

in order that it does not become much harder to satisfy for large n.
There are two approaches to bounding the inaccuracy of the computed solution

to Ax = b. Since ke(i)k, which we will call the forward error , is hard to esti-
mate directly, we introduce the backward error , which allows us to bound the for-
ward error. The normwise backward error is de�ned as the smallest possible value of
maxfk�Ak=kAk; k�bk=kbkg where x(i) is the exact solution of (A + �A)x(i) = (b + �b)
(here �A denotes a general matrix, not � times A; the same goes for �b). The backward
error may be easily computed from the residual r(i) = Ax(i) � b; we show how below.
Provided one has some bound on the inverse of A, one can bound the forward error in
terms of the backward error via the simple equality

e(i) = x(i) � x = A�1(Ax(i) � b) = A�1r(i);

which implies ke(i)k � kA�1k �kr(i)k. Therefore, a stopping criterion of the form \stop
when kr(i)k � �" also yields an upper bound on the forward error ke(i)k � � � kA�1k.
(Sometimes we may prefer to use the stricter but harder to estimate bound ke(i)k �
k jA�1j � jr(i)j k; see x4.2.3. Here jXj is the matrix or vector of absolute values of
components of X.)

The backward error also has a direct interpretation as a stopping criterion, in
addition to supplying a bound on the forward error. Recall that the backward error is
the smallest change maxfk�Ak=kAk; k�bk=kbkg to the problem Ax = b that makes x(i)

an exact solution of (A+�A)x(i) = b+�b. If the original data A and b have errors from
previous computations or measurements, then it is usually not worth iterating until
�A and �b are even smaller than these errors. For example, if the machine precision

60 CHAPTER 4. RELATED ISSUES

is ", it is not worth making k�Ak � "kAk and k�bk � "kbk, because just rounding the
entries of A and b to �t in the machine creates errors this large.

Based on this discussion, we will now consider some stopping criteria and their
properties. Above we already mentioned

Criterion 1. kr(i)k � S1 � stop tol � (kAk � kx(i)k+ kbk). This is equivalent to asking
that the backward error �A and �b described above satisfy k�Ak � stop tol � kAk
and k�bk � stop tol � kbk. This criterion yields the forward error bound

ke(i)k � kA�1k � kr(i)k � stop tol � kA�1k � (kAk � kx(i)k+ kbk) :

The second stopping criterion we discussed, which does not require kAk, may be much
more stringent than Criterion 1:

Criterion 2. kr(i)k � S2 � stop tol � kbk. This is equivalent to asking that the
backward error �A and �b satisfy �A = 0 and k�bk � tol � kbk. One di�culty
with this method is that if kAk � kxk � kbk, which can only occur if A is very
ill-conditioned and x nearly lies in the null space of A, then it may be di�cult
for any method to satisfy the stopping criterion. To see that A must be very
ill-conditioned, note that

1� kAk � kxkkbk =
kAk � kA�1bk

kbk � kAk � kA�1k :

This criterion yields the forward error bound

ke(i)k � kA�1k � kr(i)k � stop tol � kA�1k � kbk

If an estimate of kA�1k is available, one can also just stop when the upper bound on
the error kA�1k�kr(i)k falls below a threshold. This yields the third stopping criterion:

Criterion 3. kr(i)k � S3 � stop tol � kx(i)k=kA�1k. This stopping criterion guaran-
tees that

ke(i)k
kx(i)k �

kA�1k � kr(i)k
kx(i)k � stop tol ;

permitting the user to specify the desired relative accuracy stop tol in the com-
puted solution x(i).

One drawback to Criteria 1 and 2 is that they usually treat backward errors in each
component of �A and �b equally, since most norms k�Ak and k�bk measure each entry
of �A and �b equally. For example, if A is sparse and �A is dense, this loss of possibly
important structure will not be reected in k�Ak. In contrast, the following stopping
criterion gives one the option of scaling each component �aj;k and �bj di�erently,
including the possibility of insisting that some entries be zero. The cost is an extra
matrix-vector multiply:

4.2. STOPPING CRITERIA 61

Criterion 4. S4 � maxj(jr(i)jj=(E � jx(i)j+ f)j) � stop tol . Here E is a user-de�ned
matrix of nonnegative entries, f is a user-de�ned vector of nonnegative entries,
and jzj denotes the vector of absolute values of the entries of z. If this criterion is
satis�ed, it means there are a �A and a �b such that (A+ �A)x(i) = b+ �b, with
j�aj;kj � tol � ej;k, and j�bjj � tol � fj for all j and k. By choosing E and f , the
user can vary the way the backward error is measured in the stopping criterion.
For example, choosing ej;k = kAk1 and fj = kbk1 makes the stopping criterion
kr(i)k1=(nkAk1kx(i)k1 + kbk1), which is essentially the same as Criterion 1.
Choosing ej;k = jaj;kj and fj = jbjj makes the stopping criterion measure the
componentwise relative backward error , i.e., the smallest relative perturbations
in any component of A and b which is necessary to make x(i) an exact solution.
This tighter stopping criterion requires, among other things, that �A have the
same sparsity pattern as A. Other choices of E and f can be used to reect
other structured uncertainties in A and b. This criterion yields the forward error
bound

ke(i)k1 � k jA�1j � jr(i)j k � S4 � k jA�1j(Ejx(i)j+ f)k1

where jA�1j is the matrix of absolute values of entries of A�1.

Finally, we mention one more criterion, not because we recommend it, but because it
is widely used. We mention it in order to explain its potential drawbacks:

Dubious Criterion 5. kr(i)k � S5 � stop tol � kr(0)k. This commonly used criterion
has the disadvantage of depending too strongly on the initial solution x(0). If
x(0) = 0, a common choice, then r(0) = b. Then this criterion is equivalent to
Criterion 2 above, which may be di�cult to satisfy for any algorithm if kbk �
kAk�kxk. On the other hand, if x(0) is very large and very inaccurate, then kr(0)k
will be very large and S5 will be arti�cially large; this means the iteration may
stop too soon. This criterion yields the forward error bound ke(i)k � S5 � kA�1k.

4.2.2 When r
(i) or kr(i)k is not readily available

It is possible to design an iterative algorithm for which r(i) = Ax(i)� b or kr(i)k is not
directly available, although this is not the case for any algorithms in this book. For
completeness, however, we discuss stopping criteria in this case.

For example, if ones \splits" A = M � N to get the iterative method x(i) =
M�1Nx(i�1) +M�1b � Gx(i�1) + c, then the natural residual to compute is r̂(i) =
x(i) � Gx(i) � c = M�1(Ax(i) � b) = M�1r(i). In other words, the residual r̂(i) is the
same as the residual of the preconditioned system M�1Ax = M�1b. In this case, it is
hard to interpret r̂(i) as a backward error for the original system Ax = b, so we may
instead derive a forward error bound ke(i)k = kA�1Mr̂(i)k � kA�1Mk � kr̂(i)k. Using
this as a stopping criterion requires an estimate of kA�1Mk. In the case of methods
based on splitting A = M � N , we have A�1M = (M � N)�1M = (I � G)�1, and
kA�1Mk = k(I �G)�1k � 1=(1� kGk).

Another example is an implementation of the preconditioned conjugate gradient
algorithm which computes kr(i)kM�1=2;2 = (r(i)TM�1r(i))1=2 instead of kr(i)k2 (the
implementation in this book computes the latter). Such an implementation could use

62 CHAPTER 4. RELATED ISSUES

the stopping criterion kr(i)kM�1=2;2=kr(0)kM�1=2;2 � tol as in Criterion 5. We may also

use it to get the forward error bound ke(i)k � kA�1M1=2k � kr(i)kM�1=2;2, which could
also be used in a stopping criterion.

4.2.3 Estimating kA�1k

Bounds on the error ke(i)k inevitably rely on bounds for A�1, since e(i) = A�1r(i).
There is a large number of problem dependent ways to estimate A�1; we mention a
few here.

When a splitting A =M � N is used to get an iteration

x(i) = M�1Nx(i�1) +M�1b = Gx(i�1) + c;

then the matrix whose inverse norm we need is I�G. Often, we know how to estimate
kGk if the splitting is a standard one such as Jacobi or SOR, and the matrix A has
special characteristics such as Property A. Then we may estimate k(I � G)�1k �
1=(1� kGk).

When A is symmetric positive de�nite, and Chebyshev acceleration with adaptation
of parameters is being used, then at each step the algorithm estimates the largest and
smallest eigenvalues �max(A) and �min(A) of A anyway. Since A is symmetric positive
de�nite, kA�1k2 = ��1min(A).

This adaptive estimation is often done using the Lanczos algorithm (see section 5.1),
which can usually provide good estimates of the largest (rightmost) and smallest (left-
most) eigenvalues of a symmetric matrix at the cost of a few matrix-vector multiplies.
For general nonsymmetric A, we may apply the Lanczos method to AAT or ATA, and

use the fact that kA�1k2 = 1=�1=2min(AA
T) = 1=�1=2min(A

TA).
It is also possible to estimate kA�1k1 provided one is willing to solve a few systems

of linear equations withA and AT as coe�cient matrices. This is often done with dense
linear system solvers, because the extra cost of these systems is O(n2), which is small
compared to the cost O(n3) of the LU decomposition (see Hager [121], Higham [124]
and Anderson, et al. [3]). This is not the case for iterative solvers, where the cost of
these solves may well be several times as much as the original linear system. Still, if
many linear systems with the same coe�cient matrix and di�ering right-hand-sides
are to be solved, it is a viable method.

The approach in the last paragraph also lets us estimate the alternate error bound
ke(i)k1 � k jA�1j � jr(i)j k1. This may be much smaller than the simpler kA�1k1 �
kr(i)k1 in the case where the rows ofA are badly scaled; consider the case of a diagonal
matrix A with widely varying diagonal entries. To compute k jA�1j � jr(i)j k1, let R
denote the diagonal matrix with diagonal entries equal to the entries of jr(i)j; then
k jA�1j � jr(i)j k1 = kA�1Rk1 (see Arioli, Demmel and Du� [5]). kA�1Rk1 can be
estimated using the technique in the last paragraph since multiplying by A�1R or
(A�1R)T = RTA�T is no harder than multiplying by A�1 and A�T and also by R, a
diagonal matrix.

4.2.4 Stopping when progress is no longer being made

In addition to limiting the total amount of work by limiting the maximum number of
iterations one is willing to do, it is also natural to consider stopping when no apparent

4.3. DATA STRUCTURES 63

progress is being made. Some methods, such as Jacobi and SOR, often exhibit nearly
monotone linear convergence, at least after some initial transients, so it is easy to
recognize when convergence degrades. Other methods, like the conjugate gradient
method, exhibit \plateaus" in their convergence, with the residual norm stagnating
at a constant value for many iterations before decreasing again; in principle there can
be many such plateaus (see Greenbaum and Strakos [110]) depending on the problem.
Still other methods, such as CGS, can appear wildly nonconvergent for a large number
of steps before the residual begins to decrease; convergence may continue to be erratic
from step to step.

In other words, while it is a good idea to have a criterion that stops when progress
towards a solution is no longer being made, the form of such a criterion is both method
and problem dependent.

4.2.5 Accounting for oating point errors

The error bounds discussed in this section are subject to oating point errors, most of
which are innocuous, but which deserve some discussion.

The in�nity norm kxk1 = maxj jxjj requires the fewest oating point operations
to compute, and cannot overow or cause other exceptions if the xj are themselves
�nite2. On the other hand, computing kxk2 = (

P
j jxjj2)1=2 in the most straightfor-

ward manner can easily overow or lose accuracy to underow even when the true
result is far from either the overow or underow thresholds. For this reason, a careful
implementation for computing kxk2 without this danger is available (subroutine snrm2
in the BLAS [72] [144]), but it is more expensive than computing kxk1.

Now consider computing the residual r(i) = Ax(i)� b by forming the matrix-vector
product Ax(i) and then subtracting b, all in oating point arithmetic with relative
precision ". A standard error analysis shows that the error �r(i) in the computed r(i)

is bounded by k�r(i)k � O(")(kAk � kx(i)k + kbk), where O(") is typically bounded
by n", and usually closer to

p
n". This is why one should not choose stop tol �

" in Criterion 1, and why Criterion 2 may not be satis�ed by any method. This
uncertainty in the value of r(i) induces an uncertainty in the error e(i) = A�1r(i) of
at most O(")kA�1k � (kAk � kx(i)k + kbk). A more re�ned bound is that the error
(�r(i))j in the jth component of r(i) is bounded by O(") times the jth component
of jAj � jx(i)j + jbj, or more tersely j�r(i)j � O(")(jAj � jx(i)j + jbj). This means the
uncertainty in e(i) is really bounded by O(")k jA�1j � (jAj � jx(i)j + jbj)k. This last
quantity can be estimated inexpensively provided solving systems with A and AT as
coe�cient matrices is inexpensive (see the last paragraph of x4.2.3). Both these bounds
can be severe overestimates of the uncertainty in e(i), but examples exist where they
are attainable.

4.3 Data Structures

The e�ciency of any of the iterative methods considered in previous sections is de-
termined primarily by the performance of the matrix-vector product and the pre-
conditioner solve, and therefore on the storage scheme used for the matrix and the

2IEEE standard oating point arithmetic permits computations with �1 and NaN, or Not-a-
Number, symbols.

64 CHAPTER 4. RELATED ISSUES

preconditioner. Since iterative methods are typically used on sparse matrices, we will
review here a number of sparse storage formats. Often, the storage scheme used arises
naturally from the speci�c application problem.

In this section we will review some of the more popular sparse matrix formats that
are used in numerical software packages such as ITPACK [140] and NSPCG [165]. After
surveying the various formats, we demonstrate how the matrix-vector product and an
incomplete factorization solve are formulated using two of the sparse matrix formats.

4.3.1 Survey of Sparse Matrix Storage Formats

If the coe�cient matrix A is sparse, large-scale linear systems of the form Ax = b
can be most e�ciently solved if the zero elements of A are not stored. Sparse storage
schemes allocate contiguous storage in memory for the nonzero elements of the matrix,
and perhaps a limited number of zeros. This, of course, requires a scheme for knowing
where the elements �t into the full matrix.

There are many methods for storing the data (see for instance Saad [186] and
Eijkhout [87]). Here we will discuss Compressed Row and Column Storage, Block
Compressed Row Storage, Diagonal Storage, Jagged Diagonal Storage, and Skyline
Storage.

Compressed Row Storage (CRS)

The Compressed Row and Column (in the next section) Storage formats are the most
general: they make absolutely no assumptions about the sparsity structure of the
matrix, and they don't store any unnecessary elements. On the other hand, they are
not very e�cient, needing an indirect addressing step for every single scalar operation
in a matrix-vector product or preconditioner solve.

The Compressed Row Storage (CRS) format puts the subsequent nonzeros of the
matrix rows in contiguous memory locations. Assuming we have a nonsymmetric
sparse matrix A, we create 3 vectors: one for oating-point numbers (val), and the
other two for integers (col ind, row ptr). The val vector stores the values of the
nonzero elements of the matrix A, as they are traversed in a row-wise fashion. The
col ind vector stores the column indexes of the elements in the val vector. That is, if
val(k) = ai;j then col ind(k) = j. The row ptr vector stores the locations in the val
vector that start a row, that is, if val(k) = ai;j then row ptr(i) � k < row ptr(i+ 1).
By convention, we de�ne row ptr(n+ 1) = nnz + 1, where nnz is the number of
nonzeros in the matrix A. The storage savings for this approach is signi�cant. Instead
of storing n2 elements, we need only 2nnz + n+ 1 storage locations.

As an example, consider the nonsymmetric matrix A de�ned by

A =

0BBBBBB@

10 0 0 0 �2 0
3 9 0 0 0 3
0 7 8 7 0 0
3 0 8 7 5 0
0 8 0 9 9 13
0 4 0 0 2 �1

1CCCCCCA : (4.1)

The CRS format for this matrix is then speci�ed by the arrays fval, col ind,
row ptrg given below

4.3. DATA STRUCTURES 65

val 10 -2 3 9 3 7 8 7 3 � � � 9 13 4 2 -1
col ind 1 5 1 2 6 2 3 4 1 � � � 5 6 2 5 6

row ptr 1 3 6 9 13 17 20 .

If the matrixA is symmetric, we need only store the upper (or lower) triangular portion
of the matrix. The trade-o� is a more complicated algorithmwith a somewhat di�erent
pattern of data access.

Compressed Column Storage (CCS)

Analogous to Compressed Row Storage there is Compressed Column Storage (CCS),
which is also called the Harwell-Boeing sparse matrix format [78]. The CCS format
is identical to the CRS format except that the columns of A are stored (traversed)
instead of the rows. In other words, the CCS format is the CRS format for AT .

The CCS format is speci�ed by the 3 arrays fval, row ind, col ptrg, where
row ind stores the row indices of each nonzero, and col ptr stores the index of the
elements in val which start a column of A. The CCS format for the matrix A in (4.1)
is given by

val 10 3 3 9 7 8 4 8 8 � � � 9 2 3 13 -1
row ind 1 2 4 2 3 5 6 3 4 � � � 5 6 2 5 6

col ptr 1 4 8 10 13 17 20 .

Block Compressed Row Storage (BCRS)

If the sparse matrix A is comprised of square dense blocks of nonzeros in some regular
pattern, we can modify the CRS (or CCS) format to exploit such block patterns. Block
matrices typically arise from the discretization of partial di�erential equations in which
there are several degrees of freedom associated with a grid point. We then partition
the matrix in small blocks with a size equal to the number of degrees of freedom, and
treat each block as a dense matrix, even though it may have some zeros.

If nb is the dimension of each block and nnzb is the number of nonzero blocks in
the n � n matrix A, then the total storage needed is nnz = nnzb � n2b . The block
dimension nd of A is then de�ned by nd = n=nb.

Similar to the CRS format, we require 3 arrays for the BCRS format: a rectangular
array for oating-point numbers (val(1 : nnzb,1 : nb,1 : nb)) which stores the
nonzero blocks in (block) row-wise fashion, an integer array (col ind(1 : nnzb)) which
stores the actual column indices in the original matrix A of the (1; 1) elements of the
nonzero blocks, and a pointer array (row blk(1 : nd + 1)) whose entries point to the
beginning of each block row in val(:,:,:) and col ind(:). The savings in storage
locations and reduction in indirect addressing for BCRS over CRS can be signi�cant
for matrices with a large nb.

Compressed Diagonal Storage (CDS)

If the matrix A is banded with bandwidth that is fairly constant from row to row,
then it is worthwhile to take advantage of this structure in the storage scheme by
storing subdiagonals of the matrix in consecutive locations. Not only can we eliminate

66 CHAPTER 4. RELATED ISSUES

the vector identifying the column and row, we can pack the nonzero elements in such
a way as to make the matrix-vector product more e�cient. This storage scheme
is particularly useful if the matrix arises from a �nite element or �nite di�erence
discretization on a tensor product grid.

We say that the matrix A = (ai;j) is banded if there are nonnegative constants p, q,
called the left and right halfbandwidth, such that ai;j 6= 0 only if i�p � j � i+q. In this
case, we can allocate for the matrix A an array val(1:n,-p:q). The declaration with
reversed dimensions (-p:q,n) corresponds to the LINPACK band format [73], which
unlike CDS, does not allow for an e�ciently vectorizable matrix-vector multiplication
if p+ q is small.

Usually, band formats involve storing some zeros. The CDS format may even
contain some array elements that do not correspond to matrix elements at all. Consider
the nonsymmetric matrix A de�ned by

A =

0BBBBBB@

10 �3 0 0 0 0
3 9 6 0 0 0
0 7 8 7 0 0
0 0 8 7 5 0
0 0 0 9 9 13
0 0 0 0 2 �1

1CCCCCCA : (4.2)

Using the CDS format, we store this matrix A in an array of dimension (6,-1:1)

using the mapping

val(i; j) = ai;i+j: (4.3)

Hence, the rows of the val(:,:) array are

val(:,-1) 0 3 7 8 9 2
val(:, 0) 10 9 8 7 9 -1
val(:,+1) -3 6 7 5 13 0

.

Notice the two zeros corresponding to non-existing matrix elements.
A generalization of the CDS format more suitable for manipulating general sparse

matrices on vector supercomputers is discussed by Melhem in [154]. This variant of
CDS uses a stripe data structure to store the matrix A. This structure is more e�cient
in storage in the case of varying bandwidth, but it makes the matrix-vector product
slightly more expensive, as it involves a gather operation.

As de�ned in [154], a stripe in the n � n matrix A is a set of positions S =
f(i; �(i)); i 2 I � Ing, where In = f1; : : : ; ng and � is a strictly increasing function.
Speci�cally, if (i; �(i)) and (j; �(j)) are in S, then

i < j ! �(i) < �(j):

When computing the matrix-vector product y = Ax using stripes, each (i; �k(i)) ele-
ment of A in stripe Sk is multiplied with both xi and x�k(i) and these products are
accumulated in y�k(i) and yi, respectively. For the nonsymmetric matrix A de�ned by

A =

0BBBBBB@

10 �3 0 1 0 0
0 9 6 0 �2 0
3 0 8 7 0 0
0 6 0 7 5 4
0 0 0 0 9 13
0 0 0 0 5 �1

1CCCCCCA ; (4.4)

4.3. DATA STRUCTURES 67

the 4 stripes of the matrix A stored in the rows of the val(:,:) array would be

val(:,-1) 0 0 3 6 0 5
val(:, 0) 10 9 8 7 9 -1
val(:,+1) 0 -3 6 7 5 13
val(:,+2) 0 1 -2 0 4 0

.

Jagged Diagonal Storage (JDS)

The Jagged Diagonal Storage format can be useful for the implementation of iterative
methods on parallel and vector processors (see Saad [185]). Like the Compressed
Diagonal format, it gives a vector length essentially of the size of the matrix. It is
more space-e�cient than CDS at the cost of a gather/scatter operation.

A simpli�ed form of JDS, called ITPACK storage or Purdue storage, can be described
as follows. In the matrix from (4.4) all elements are shifted left:0BBBBBB@

10 �3 0 1 0 0
0 9 6 0 �2 0
3 0 8 7 0 0
0 6 0 7 5 4
0 0 0 0 9 13
0 0 0 0 5 �1

1CCCCCCA �!
0BBBBBB@

10 �3 1
9 6 �2
3 8 7
6 7 5 4
9 13
5 �1

1CCCCCCA
after which the columns are stored consecutively. All rows are padded with zeros on
the right to give them equal length. Corresponding to the array of matrix elements
val(:,:), an array of column indices, col ind(:,:) is also stored:

val(:; 1) 10 9 3 6 9 5
val(:; 2) �3 6 8 7 13 �1
val(:; 3) 1 �2 7 5 0 0
val(:; 4) 0 0 0 4 0 0

;

col ind(:; 1) 1 2 1 2 5 5
col ind(:; 2) 2 3 3 4 6 6
col ind(:; 3) 4 5 4 5 0 0
col ind(:; 4) 0 0 0 6 0 0

:

It is clear that the padding zeros in this structure may be a disadvantage, especially
if the bandwidth of the matrix varies strongly. Therefore, in the CRS format, we
reorder the rows of the matrix decreasingly according to the number of nonzeros per
row. The compressed and permuted diagonals are then stored in a linear array. The
new data structure is called jagged diagonals.

The number of jagged diagonals is equal to the number of nonzeros in the �rst
row, i.e., the largest number of nonzeros in any row of A. The data structure to
represent the n � n matrix A therefore consists of a permutation array (perm(1:n))
which reorders the rows, a oating-point array (jdiag(:)) containing the jagged
diagonals in succession, an integer array (col ind(:)) containing the corresponding
column indices, and �nally a pointer array (jd ptr(:)) whose elements point to the

68 CHAPTER 4. RELATED ISSUES

beginning of each jagged diagonal. The advantages of JDS for matrix multiplications
are discussed by Saad in [185].

The JDS format for the above matrix A in using the linear arrays fperm, jdiag,
col ind, jd ptrg is given below (jagged diagonals are separated by semicolons)

jdiag 6 9 3 10 9 5; 7 6 8 -3 13 -1; 5 -2 7 1; 4;
col ind 2 2 1 1 5 5; 4 3 3 2 6 6; 5 5 4 4; 6;

perm 4 2 3 1 5 6 jd ptr 1 7 13 17 .

Skyline Storage (SKS)

The �nal storage scheme we consider is for skyline matrices, which are also called
variable band or pro�le matrices (see Du�, Erisman and Reid [80]). It is mostly of
importance in direct solution methods, but it can be used for handling the diagonal
blocks in block matrix factorization methods. A major advantage of solving linear
systems having skyline coe�cient matrices is that when pivoting is not necessary, the
skyline structure is preserved during Gaussian elimination. If the matrix is symmetric,
we only store its lower triangular part. A straightforward approach in storing the
elements of a skyline matrix is to place all the rows (in order) into a oating-point
array (val(:)), and then keep an integer array (row ptr(:)) whose elements point to
the beginning of each row. The column indices of the nonzeros stored in val(:) are
easily derived and are not stored.

For a nonsymmetric skyline matrix such as the one illustrated in Figure 4.1, we store
the lower triangular elements in SKS format, and store the upper triangular elements
in a column-oriented SKS format (transpose stored in row-wise SKS format). These
two separated substructures can be linked in a variety of ways. One approach, discussed
by Saad in [186], is to store each row of the lower triangular part and each column
of the upper triangular part contiguously into the oating-point array (val(:)). An
additional pointer is then needed to determine where the diagonal elements, which
separate the lower triangular elements from the upper triangular elements, are located.

4.3.2 Matrix vector products

In many of the iterative methods discussed earlier, both the product of a matrix and
that of its transpose times a vector are needed, that is, given an input vector x we
want to compute products

y = Ax and y = ATx:

We will present these algorithms for two of the storage formats from x4.3: CRS and
CDS.

CRS Matrix-Vector Product

The matrix vector product y = Ax using CRS format can be expressed in the usual
way:

yi =
X
j

ai;jxj;

4.3. DATA STRUCTURES 69

+ x x
x + x x
x x + x x

x x + x x x x
x + x x x

x x x + x x
x x + x x x
x x x + x x x x
x x x x + x x x

x + x x x
x x x x + x x

x x + x x
x x x + x x x

x x + x x
+ x x

x x x + x
+

Figure 4.1: Pro�le of a nonsymmetric skyline or variable-band matrix.

since this traverses the rows of the matrixA. For an n�n matrix A, the matrix-vector
multiplication is given by

for i = 1, n

y(i) = 0

for j = row_ptr(i), row_ptr(i+1) - 1

y(i) = y(i) + val(j) * x(col_ind(j))

end;

end;

Since this method only multiplies nonzero matrix entries, the operation count is 2 times
the number of nonzero elements in A, which is a signi�cant savings over the dense
operation requirement of 2n2.

For the transpose product y = ATx we cannot use the equation

yi =
X
j

(AT)i;jxj =
X
j

aj;ixj;

since this implies traversing columns of the matrix, an extremely ine�cient operation
for matrices stored in CRS format. Hence, we switch indices to

for all j, do for all i: yi yi + aj;ixj :

The matrix-vector multiplication involving AT is then given by

for i = 1, n

y(i) = 0

end;

for j = 1, n

for i = row_ptr(j), row_ptr(j+1)-1

y(col_ind(i)) = y(col_ind(i)) + val(i) * x(j)

70 CHAPTER 4. RELATED ISSUES

end;

end;

Both matrix-vector products above have largely the same structure, and both use
indirect addressing. Hence, their vectorizability properties are the same on any given
computer. However, the �rst product (y = Ax) has a more favorable memory access
pattern in that (per iteration of the outer loop) it reads two vectors of data (a row
of matrix A and the input vector x) and writes one scalar. The transpose product
(y = ATx) on the other hand reads one element of the input vector, one row of
matrix A, and both reads and writes the result vector y. Unless the machine on which
these methods are implemented has three separate memory paths (e.g., Cray Y-MP),
the memory tra�c will then limit the performance. This is an important consideration
for RISC-based architectures.

CDS Matrix-Vector Product

If the n� n matrix A is stored in CDS format, it is still possible to perform a matrix-
vector product y = Ax by either rows or columns, but this does not take advantage
of the CDS format. The idea is to make a change in coordinates in the doubly-nested
loop. Replacing j ! i + j we get

yi yi + ai;jxj) yi yi + ai;i+jxi+j :

With the index i in the inner loop we see that the expression ai;i+j accesses the jth
diagonal of the matrix (where the main diagonal has number 0).

The algorithm will now have a doubly-nested loop with the outer loop enumerating
the diagonals diag=-p,q with p and q the (nonnegative) numbers of diagonals to the
left and right of the main diagonal. The bounds for the inner loop follow from the
requirement that

1 � i; i+ j � n:

The algorithm becomes

for i = 1, n

y(i) = 0

end;

for diag = -diag_left, diag_right

for loc = max(1,1-diag), min(n,n-diag)

y(loc) = y(loc) + val(loc,diag) * x(loc+diag)

end;

end;

The transpose matrix-vector product y = ATx is a minor variation of the algorithm
above. Using the update formula

yi yi + ai+j;ixj

= yi + ai+j;i+j�jxi+j

we obtain

4.3. DATA STRUCTURES 71

for i = 1, n

y(i) = 0

end;

for diag = -diag_right, diag_left

for loc = max(1,1-diag), min(n,n-diag)

y(loc) = y(loc) + val(loc+diag, -diag) * x(loc+diag)

end;

end;

The memory access for the CDS-based matrix-vector product y = Ax (or y = ATx) is
three vectors per inner iteration. On the other hand, there is no indirect addressing,
and the algorithm is vectorizable with vector lengths of essentially the matrix or-
der n. Because of the regular data access, most machines can perform this algorithm
e�ciently by keeping three base registers and using simple o�set addressing.

4.3.3 Sparse Incomplete Factorizations

E�cient preconditioners for iterative methods can be found by performing an incom-
plete factorization of the coe�cient matrix. In this section, we discuss the incomplete
factorization of an n � n matrix A stored in the CRS format, and routines to solve
a system with such a factorization. At �rst we only consider a factorization of the
D-ILU type, that is, the simplest type of factorization in which no \�ll" is allowed,
even if the matrix has a nonzero in the �ll position (see section 3.4.2). Later we will
consider factorizations that allow higher levels of �ll. Such factorizations considerably
more complicated to code, but they are essential for complicated di�erential equations.
The solution routines are applicable in both cases.

For iterative methods, such as QMR, that involve a transpose matrix vector prod-
uct we need to consider solving a system with the transpose of as factorization as
well.

Generating a CRS-based D-ILU Incomplete Factorization

In this subsection we will consider a matrix split as A = DA + LA + UA in diagonal,
lower and upper triangular part, and an incomplete factorization preconditioner of the
form (DA+LA)D

�1
A (DA+UA). In this way, we only need to store a diagonal matrixD

containing the pivots of the factorization.
Hence,it su�ces to allocate for the preconditioner only a pivot array of length n

(pivots(1:n)). In fact, we will store the inverses of the pivots rather than the pivots
themselves. This implies that during the system solution no divisions have to be
performed.

Additionally, we assume that an extra integer array diag ptr(1:n) has been allo-
cated that contains the column (or row) indices of the diagonal elements in each row,
that is, val(diag ptr(i)) = ai;i.

The factorization begins by copying the matrix diagonal

for i = 1, n

pivots(i) = val(diag_ptr(i))

end;

Each elimination step starts by inverting the pivot

72 CHAPTER 4. RELATED ISSUES

for i = 1, n

pivots(i) = 1 / pivots(i)

For all nonzero elements ai;j with j > i, we next check whether aj;i is a nonzero matrix
element, since this is the only element that can cause �ll with ai;j.

for j = diag_ptr(i)+1, row_ptr(i+1)-1

found = FALSE

for k = row_ptr(col_ind(j)), diag_ptr(col_ind(j))-1

if(col_ind(k) = i) then

found = TRUE

element = val(k)

endif

end;

If so, we update aj;j.

if (found = TRUE)

pivots(col_ind(j)) = pivots(col_ind(j))

- element * pivots(i) * val(j)

end;

end;

CRS-based Factorization Solve

The system LUy = x can be solved in the usual manner by introducing a temporary
vector z:

Lz = x; Uy = z:

We have a choice between several equivalent ways of solving the system:

LU = (D + LA)D
�1(D + UA)

= (I + LAD
�1)(D + UA)

= (D + LA)(I +D�1UA)

= (I + LAD
�1)D(I +D�1UA)

The �rst and fourth formulae are not suitable since they require both multiplication
and division with D; the di�erence between the second and third is only one of ease
of coding. In this section we use the third formula; in the next section we will use the
second for the transpose system solution.

Both halves of the solution have largely the same structure as the matrix vector
multiplication.

for i = 1, n

sum = 0

for j = row_ptr(i), diag_ptr(i)-1

sum = sum + val(j) * z(col_ind(j))

end;

z(i) = pivots(i) * (x(i)-sum)

end;

4.3. DATA STRUCTURES 73

for i = n, 1, (step -1)

sum = 0

for j = diag(i)+1, row_ptr(i+1)-1

sum = sum + val(j) * y(col_ind(j))

y(i) = z(i) - pivots(i) * sum

end;

end;

The temporary vector z can be eliminated by reusing the space for y; algorithmically,
z can even overwrite x, but overwriting input data is in general not recommended.

CRS-based Factorization Transpose Solve

Solving the transpose system (LU)Ty = x is slightly more involved. In the usual
formulation we traverse rows when solving a factored system, but here we can only
access columns of the matrices LT and UT (at less than prohibitive cost). The key
idea is to distribute each newly computed component of a triangular solve immediately
over the remaining right-hand-side.

For instance, if we write a lower triangular matrix as L = (l�1; l�2; : : :), then the
system Ly = x can be written as x = l�1y1 + l�2y2 + � � �. Hence, after computing y1
we modify x x � l�1y1, and so on. Upper triangular systems are treated in a
similar manner. With this algorithm we only access columns of the triangular systems.
Solving a transpose system with a matrix stored in CRS format essentially means that
we access rows of L and U .

The algorithm now becomes

for i = 1, n

x_tmp(i) = x(i)

end;

for i = 1, n

z(i) = x_tmp(i)

tmp = pivots(i) * z(i)

for j = diag_ptr(i)+1, row_ptr(i+1)-1

x_tmp(col_ind(j)) = x_tmp(col_ind(j)) - tmp * val(j)

end;

end;

for i = n, 1 (step -1)

y(i) = pivots(i) * z(i)

for j = row_ptr(i), diag_ptr(i)-1

z(col_ind(j)) = z(col_ind(j)) - val(j) * y(i)

end;

end;

The extra temporary x tmp is used only for clarity, and can be overlapped with z.
Both x tmp and z can be considered to be equivalent to y. Overall, a CRS-based
preconditioner solve uses short vector lengths, indirect addressing, and has essentially
the same memory tra�c patterns as that of the matrix-vector product.

74 CHAPTER 4. RELATED ISSUES

Generating a CRS-based ILU (k) Incomplete Factorization

Incomplete factorizations with several levels of �ll allowed are more accurate than the
D-ILU factorization described above. On the other hand, they require more storage,
and are considerably harder to implement (much of this section is based on algorithms
for a full factorization of a sparse matrix as found in Du�, Erisman and Reid [80]).

As a preliminary, we need an algorithm for adding two vectors x and y, both stored
in sparse storage. Let lx be the number of nonzero components in x, let x be stored
in x, and let xind be an integer array such that

if xind(j)=i then x(j) = xi.

Similarly, y is stored as ly, y, yind.
We now add x x + y by �rst copying y into a full vector w then adding w to x.

The total number of operations will be O(lx+ ly)3:

% copy y into w

for i=1,ly

w(yind(i)) = y(i)

% add w to x wherever x is already nonzero

for i=1,lx

if w(xind(i)) <> 0

x(i) = x(i) + w(xind(i))

w(xind(i)) = 0

% add w to x by creating new components

% wherever x is still zero

for i=1,ly

if w(yind(i)) <> 0 then

lx = lx+1

xind(lx) = yind(i)

x(lx) = w(yind(i))

endif

In order to add a sequence of vectors x x+
P

k y
(k), we add the y(i) vectors into w

before executing the writes into x. A di�erent implementation would be possible,
where w is allocated as a sparse vector and its sparsity pattern is constructed during
the additions. We will not discuss this possibility any further.

For a slight re�nement of the above algorithm, we will add levels to the nonzero
components: we assume integer vectors xlev and ylev of length lx and ly respectively,
and a full length level vector wlev corresponding to w. The addition algorithm then
becomes:

% copy y into w

for i=1,ly

w(yind(i)) = y(i)

wlev(yind(i)) = ylev(i)

% add w to x wherever x is already nonzero;

% don't change the levels

for i=1,lx

3This is not counting the initial zeroing of the w array.

4.3. DATA STRUCTURES 75

if w(xind(i)) <> 0

x(i) = x(i) + w(xind(i))

w(xind(i)) = 0

% add w to x by creating new components

% wherever x is still zero;

% carry over levels

for i=1,ly

if w(yind(i)) <> 0 then

lx = lx+1

x(lx) = w(yind(i))

xind(lx) = yind(i)

xlev(lx) = wlev(yind(i))

endif

We can now describe the ILU (k) factorization. The algorithm starts out with the
matrix A, and gradually builds up a factorization M of the formM = (D+L)(I+D�1U),
where L, D�1, and D�1U are stored in the lower triangle, diagonal and upper triangle
of the array M respectively. The particular form of the factorization is chosen to
minimize the number of times that the full vector w is copied back to sparse form.

Speci�cally, we use a sparse form of the following factorization scheme:

for k=1,n

for j=1,k-1

for i=j+1,n

a(k,i) = a(k,i) - a(k,j)*a(j,i)

for j=k+1,n

a(k,j) = a(k,j)/a(k,k)

This is a row-oriented version of the traditional `left-looking' factorization algorithm.
We will describe an incomplete factorization that controls �ll-in through levels (see

equation (3.1)). Alternatively we could use a drop tolerance (section 3.4.2), but this
is less attractive from a point of implementation. With �ll levels we can perform
the factorization symbolically at �rst, determining storage demands and reusing this
information through a number of linear systems of the same sparsity structure. Such
preprocessing and reuse of information is not possible with �ll controlled by a drop
tolerance criterion.

The matrix arrays A and M are assumed to be in compressed row storage, with no
particular ordering of the elements inside each row, but arrays adiag and mdiag point
to the locations of the diagonal elements.

for row=1,n

% go through elements A(row,col) with col<row

COPY ROW row OF A() INTO DENSE VECTOR w

for col=aptr(row),aptr(row+1)-1

if aind(col) < row then

acol = aind(col)

MULTIPLY ROW acol OF M() BY A(col)

SUBTRACT THE RESULT FROM w

ALLOWING FILL-IN UP TO LEVEL k

76 CHAPTER 4. RELATED ISSUES

endif

INSERT w IN ROW row OF M()

% invert the pivot

M(mdiag(row)) = 1/M(mdiag(row))

% normalize the row of U

for col=mptr(row),mptr(row+1)-1

if mind(col) > row

M(col) = M(col) * M(mdiag(row))

The structure of a particular sparse matrix is likely to apply to a sequence of
problems, for instance on di�erent time-steps, or during a Newton iteration. Thus
it may pay o� to perform the above incomplete factorization �rst symbolically to
determine the amount and location of �ll-in and use this structure for the numerically
di�erent but structurally identical matrices. In this case, the array for the numerical
values can be used to store the levels during the symbolic factorization phase.

4.4 Parallelism

In this section we discuss aspects of parallelism in the iterative methods discussed in
this book.

Since the iterative methods share most of their computational kernels we will dis-
cuss these independent of the method. The basic time-consuming kernels of iterative
schemes are:

� inner products,

� vector updates,

� matrix{vector products, e.g., Ap(i) (for some methods also ATp(i)),

� preconditioner solves.

We will examine each of these in turn. We will conclude this section by discussing
two particular issues, namely computational wavefronts in the SOR method, and block
operations in the GMRES method.

4.4.1 Inner products

The computation of an inner product of two vectors can be easily parallelized; each
processor computes the inner product of corresponding segments of each vector (local
inner products or LIPs). On distributed-memory machines the LIPs then have to be
sent to other processors to be combined for the global inner product. This can be
done either with an all-to-all send where every processor performs the summation of
the LIPs, or by a global accumulation in one processor, followed by a broadcast of the
�nal result. Clearly, this step requires communication.

For shared-memory machines, the accumulation of LIPs can be implemented as a
critical section where all processors add their local result in turn to the global result,
or as a piece of serial code, where one processor performs the summations.

4.4. PARALLELISM 77

Overlapping communication and computation

Clearly, in the usual formulation of conjugate gradient-type methods the inner prod-
ucts induce a synchronization of the processors, since they cannot progress until the
�nal result has been computed: updating x(i+1) and r(i+1) can only begin after com-
pleting the inner product for �i. Since on a distributed-memory machine communi-
cation is needed for the inner product, we cannot overlap this communication with
useful computation. The same observation applies to updating p(i), which can only
begin after completing the inner product for �i�1.

Figure 4.2 shows a variant of CG, in which all communication time may be over-
lapped with useful computations. This is just a reorganized version of the original CG
scheme, and is therefore precisely as stable. Another advantage over other approaches
(see below) is that no additional operations are required.

This rearrangement is based on two tricks. The �rst is that updating the iterate is

delayed to mask the communication stage of the p(i)
T

Ap(i) inner product. The second
trick relies on splitting the (symmetric) preconditioner as M = LLT , so one �rst

computes L�1r(i), after which the inner product r(i)
T

M�1r(i) can be computed as sT s
where s = L�1r(i). The computation of L�T s will then mask the communication stage
of the inner product.

x(�1) = x(0)= initial guess; r(0) = b�Ax(0);
p(�1) = 0; ��1 = 0;��1 = 0;
s = L�1r(0);
�0 = (s; s)
for i = 0; 1; 2; ::::

w(i) = L�T s;
p(i) = w(i) + �i�1p

(i�1);
q(i) = Ap(i);
 = (p(i); q(i));
x(i) = x(i�1) + �i�1p

(i�1);
�i = �i=;
r(i+1) = r(i) � �iq

(i);
s = L�1r(i+1);
�i+1 = (s; s);
if kr(i+1)k small enough then

x(i+1) = x(i) + �ip
(i)

quit;
endif
�i = �i+1=�i;

end;

Figure 4.2: A rearrangement of Conjugate Gradient for parallelism

Under the assumptions that we have made, CG can be e�ciently parallelized as

78 CHAPTER 4. RELATED ISSUES

follows:

1. The communication required for the reduction of the inner product for can be
overlapped with the update for x(i), (which could in fact have been done in the
previous iteration step).

2. The reduction of the inner product for �i+1 can be overlapped with the remaining
part of the preconditioning operation at the beginning of the next iteration.

3. The computation of a segment of p(i) can be followed immediately by the com-
putation of a segment of q(i), and this can be followed by the computation of
a part of the inner product. This saves on load operations for segments of p(i)

and q(i).

For a more detailed discussion see Demmel, Heath and Van der Vorst [67]. This algo-
rithm can be extended trivially to preconditioners of LDLT form, and nonsymmetric
preconditioners in the Biconjugate Gradient Method.

Fewer synchronization points

Several authors have found ways to eliminate some of the synchronization points in-
duced by the inner products in methods such as CG. One strategy has been to replace
one of the two inner products typically present in conjugate gradient-like methods
by one or two others in such a way that all inner products can be performed simul-
taneously. The global communication can then be packaged. A �rst such method
was proposed by Saad [182] with a modi�cation to improve its stability suggested by
Meurant [156]. Recently, related methods have been proposed by Chronopoulos and
Gear [55], D'Azevedo and Romine [62], and Eijkhout [88]. These schemes can also
be applied to nonsymmetric methods such as BiCG. The stability of such methods is
discussed by D'Azevedo, Eijkhout and Romine [61].

Another approach is to generate a number of successive Krylov vectors (see x2.3.4)
and orthogonalize these as a block (see Van Rosendale [210], and Chronopoulos and
Gear [55]).

4.4.2 Vector updates

Vector updates are trivially parallelizable: each processor updates its own segment.

4.4.3 Matrix-vector products

The matrix{vector products are often easily parallelized on shared-memory machines
by splitting the matrix in strips corresponding to the vector segments. Each processor
then computes the matrix{vector product of one strip. For distributed-memory ma-
chines, there may be a problem if each processor has only a segment of the vector in its
memory. Depending on the bandwidth of the matrix, we may need communication for
other elements of the vector, which may lead to communication bottlenecks. However,
many sparse matrix problems arise from a network in which only nearby nodes are
connected. For example, matrices stemming from �nite di�erence or �nite element
problems typically involve only local connections: matrix element ai;j is nonzero only

4.4. PARALLELISM 79

if variables i and j are physically close. In such a case, it seems natural to subdivide
the network, or grid, into suitable blocks and to distribute them over the proces-
sors. When computing Api, each processor requires the values of pi at some nodes in
neighboring blocks. If the number of connections to these neighboring blocks is small
compared to the number of internal nodes, then the communication time can be over-
lapped with computational work. For more detailed discussions on implementation
aspects for distributed memory systems, see De Sturler [63] and Pommerell [175].

4.4.4 Preconditioning

Preconditioning is often the most problematic part of parallelizing an iterative method.
We will mention a number of approaches to obtaining parallelism in preconditioning.

Discovering parallelism in sequential preconditioners. Certain precondition-
ers were not developed with parallelism in mind, but they can be executed in parallel.
Some examples are domain decomposition methods (see x5.4), which provide a high
degree of coarse grained parallelism, and polynomial preconditioners (see x3.5), which
have the same parallelism as the matrix-vector product.

Incomplete factorization preconditioners are usually much harder to parallelize:
using wavefronts of independent computations (see for instance Paolini and Radi-
cati di Brozolo [170]) a modest amount of parallelism can be attained, but the imple-
mentation is complicated. For instance, a central di�erence discretization on regular
grids gives wavefronts that are hyperplanes (see Van der Vorst [203, 205]).

More parallel variants of sequential preconditioners. Variants of existing se-
quential incomplete factorization preconditioners with a higher degree of parallelism
have been devised, though they are perhaps less e�cient in purely scalar terms than
their ancestors. Some examples are: reorderings of the variables (see Du� and Meu-
rant [79] and Eijkhout [85]), expansion of the factors in a truncated Neumann series
(see Van der Vorst [201]), various block factorization methods (see Axelsson and Eijk-
hout [15] and Axelsson and Polman [21]), and multicolor preconditioners.

Multicolor preconditioners have optimal parallelism among incomplete factoriza-
tion methods, since the minimal number of sequential steps equals the color number
of the matrix graphs. For theory and applications to parallelism see Jones and Plass-
man [127, 128].

Fully decoupled preconditioners. If all processors execute their part of the pre-
conditioner solve without further communication, the overall method is technically a
block Jacobi preconditioner (see x3.2.1). While their parallel execution is very e�-
cient, they may not be as e�ective as more complicated, less parallel preconditioners,
since improvement in the number of iterations may be only modest. To get a big-
ger improvement while retaining the e�cient parallel execution, Radicati di Brozolo
and Robert [178] suggest that one construct incomplete decompositions on slightly
overlapping domains. This requires communication similar to that for matrix{vector
products.

80 CHAPTER 4. RELATED ISSUES

4.4.5 Wavefronts in the Gauss-Seidel and Conjugate Gradient
methods

At �rst sight, the Gauss-Seidel method (and the SOR method which has the same basic
structure) seems to be a fully sequential method. A more careful analysis, however,
reveals a high degree of parallelism if the method is applied to sparse matrices such as
those arising from discretized partial di�erential equations.

We start by partitioning the unknowns in wavefronts. The �rst wavefront contains
those unknowns that (in the directed graph of D�L) have no predecessor; subsequent
wavefronts are then sets (this de�nition is not necessarily unique) of successors of
elements of the previous wavefront(s), such that no successor/predecessor relations
hold among the elements of this set. It is clear that all elements of a wavefront can be
processed simultaneously, so the sequential time of solving a system with D � L can
be reduced to the number of wavefronts.

Next, we observe that the unknowns in a wavefront can be computed as soon
as all wavefronts containing its predecessors have been computed. Thus we can, in
the absence of tests for convergence, have components from several iterations being
computed simultaneously. Adams and Jordan [2] observe that in this way the natural
ordering of unknowns gives an iterative method that is mathematically equivalent to
a multi-color ordering.

In the multi-color ordering, all wavefronts of the same color are processed simul-
taneously. This reduces the number of sequential steps for solving the Gauss-Seidel
matrix to the number of colors, which is the smallest number d such that wavefront i
contains no elements that are a predecessor of an element in wavefront i+ d.

As demonstrated by O'Leary [164], SOR theory still holds in an approximate sense
for multi-colored matrices. The above observation that the Gauss-Seidel method with
the natural ordering is equivalent to a multicoloring cannot be extended to the SSOR
method or wavefront-based incomplete factorization preconditioners for the Conjugate
Gradient method. In fact, tests by Du� and Meurant [79] and an analysis by Eijk-
hout [85] show that multicolor incomplete factorization preconditioners in general may
take a considerably larger number of iterations to converge than preconditioners based
on the natural ordering. Whether this is o�set by the increased parallelism depends
on the application and the computer architecture.

4.4.6 Blocked operations in the GMRES method

In addition to the usual matrix-vector product, inner products and vector updates,
the preconditioned GMRES method (see x2.3.4) has a kernel where one new vector,
M�1Av(j), is orthogonalized against the previously built orthogonal set fv(1), v(2),: : : ,
v(j)g. In our version, this is done using Level 1 BLAS, which may be quite ine�cient.
To incorporate Level 2 BLAS we can apply either Householder orthogonalization or
classical Gram-Schmidt twice (which mitigates classical Gram-Schmidt's potential in-
stability; see Saad [185]). Both approaches signi�cantly increase the computational
work, but using classical Gram-Schmidt has the advantage that all inner products can
be performed simultaneously; that is, their communication can be packaged. This may
increase the e�ciency of the computation signi�cantly.

Another way to obtain more parallelism and data locality is to generate a ba-
sis fv(1), Av(1), ..., Amv(1)g for the Krylov subspace �rst, and to orthogonalize this

4.4. PARALLELISM 81

set afterwards; this is called m-step GMRES(m) (see Kim and Chronopoulos [139]).
(Compare this to the GMRES method in x2.3.4, where each new vector is immediately
orthogonalized to all previous vectors.) This approach does not increase the compu-
tational work and, in contrast to CG, the numerical instability due to generating a
possibly near-dependent set is not necessarily a drawback.

82 CHAPTER 4. RELATED ISSUES

Chapter 5

Remaining topics

5.1 The Lanczos Connection

As discussed by Paige and Saunders in [168] and by Golub and Van Loan in [109], it is
straightforward to derive the conjugate gradient method for solving symmetric positive
de�nite linear systems from the Lanczos algorithm for solving symmetric eigensystems
and vice versa. As an example, let us consider how one can derive the Lanczos process
for symmetric eigensystems from the (unpreconditioned) conjugate gradient method.

Suppose we de�ne the n� k matrix R(k) by

Rk = [r(0); r(1); : : : ; r(k�1)];

and the k � k upper bidiagonal matrix Bk by

Bk =

266666664

1 ��1 � � � 0

1 ��2
...

. . .
. . .

. . .
...

. . .
. . . ��k�1

0 � � � 1

377777775
;

where the sequences fr(k)g and f�kg are de�ned by the standard conjugate gradient
algorithm discussed in x2.3.1. From the equations

p(j) = r(j�1) + �j�1p
(j�1); j = 2; 3; : : : ; k ;

and p(1) = r(0), we have Rk = PkBk, where

Pk = [p(1); p(2); : : : ; p(k)]:

Assuming the elements of the sequence fp(j)g are A-conjugate, it follows that

T̂k = RT
kARk = BT

k �̂kBk

83

84 CHAPTER 5. REMAINING TOPICS

is a tridiagonal matrix since

�̂k =

2666666664

p(1)
T

Ap(1) 0 � � � 0

0 p(2)
T

Ap(2)
...

. . .
. . .

. . .
...

. . .
. . . 0

0 � � � 0 p(k)
T

Ap(k)

3777777775
:

Since spanfp(1); p(2); : : : ; p(j)g = spanfr(0); r(1); : : : ; r(j�1)g and since the ele-
ments of fr(j)g are mutually orthogonal, it can be shown that the columns of n�k ma-
trixQk = Rk��1 form an orthonormal basis for the subspace spanfb; Ab; : : : ; Ak�1bg,
where � is a diagonal matrix whose ith diagonal element is kr(i)k2. The columns of
the matrix Qk are the Lanczos vectors (see Parlett [171]) whose associated projection
of A is the tridiagonal matrix

Tk = ��1BT
k �̂kBk�

�1 : (5.1)

The extremal eigenvalues of Tk approximate those of the matrix A. Hence, the di-
agonal and subdiagonal elements of Tk in (5.1), which are readily available during
iterations of the conjugate gradient algorithm (x2.3.1), can be used to construct Tk
after k CG iterations. This allows us to obtain good approximations to the extremal
eigenvalues (and hence the condition number) of the matrix A while we are generating
approximations, x(k), to the solution of the linear system Ax = b.

For a nonsymmetric matrix A, an equivalent nonsymmetric Lanczos algorithm
(see Lanczos [142]) would produce a nonsymmetric matrix Tk in (5.1) whose extremal
eigenvalues (which may include complex-conjugate pairs) approximate those of A. The
nonsymmetric Lanczos method is equivalent to the BiCG method discussed in x2.3.5.

5.2 Block and s-step Iterative Methods

The methods discussed so far are all subspace methods, that is, in every iteration they
extend the dimension of the subspace generated. In fact, they generate an orthogonal
basis for this subspace, by orthogonalizing the newly generated vector with respect to
the previous basis vectors.

However, in the case of nonsymmetric coe�cient matrices the newly generated
vector may be almost linearly dependent on the existing basis. To prevent break-down
or severe numerical error in such instances, methods have been proposed that perform
a look-ahead step (see Freund, Gutknecht and Nachtigal [101], Parlett, Taylor and
Liu [172], and Freund and Nachtigal [102]).

Several new, unorthogonalized, basis vectors are generated and are then orthogo-
nalized with respect to the subspace already generated. Instead of generating a basis,
such a method generates a series of low-dimensional orthogonal subspaces.

The s-step iterative methods of Chronopoulos and Gear [55] use this strategy of
generating unorthogonalized vectors and processing them as a block to reduce compu-
tational overhead and improve processor cache behavior.

5.3. REDUCED SYSTEM PRECONDITIONING 85

If conjugate gradient methods are considered to generate a factorization of a tridi-
agonal reduction of the original matrix, then look-ahead methods generate a block
factorization of a block tridiagonal reduction of the matrix.

A block tridiagonal reduction is also e�ected by the Block Lanczos algorithm and
the Block Conjugate Gradient method (see O'Leary [163]). Such methods operate on
multiple linear systems with the same coe�cient matrix simultaneously, for instance
with multiple right hand sides, or the same right hand side but with di�erent initial
guesses. Since these block methods use multiple search directions in each step, their
convergence behavior is better than for ordinary methods. In fact, one can show that
the spectrum of the matrix is e�ectively reduced by the nb � 1 smallest eigenvalues,
where nb is the block size.

5.3 Reduced System Preconditioning

As we have seen earlier, a suitable preconditioner for CG is a matrixM such that the
system

M�1Ax =M�1f

requires fewer iterations to solve than Ax = f does, and for which systems Mz = r
can be solved e�ciently. The �rst property is independent of the machine used, while
the second is highly machine dependent. Choosing the best preconditioner involves
balancing those two criteria in a way that minimizes the overall computation time.
One balancing approach used for matrices A arising from 5-point �nite di�erence dis-
cretization of second order elliptic partial di�erential equations (PDEs) with Dirichlet
boundary conditions involves solving a reduced system. Speci�cally, for an n� n grid,
we can use a point red-black ordering of the nodes to get

Ax =

�
DR C
CT DB

� �
xR
xB

�
=

�
fR
fB

�
; (5.2)

where DR and DB are diagonal, and C is a well-structured sparse matrix with
5 nonzero diagonals if n is even and 4 nonzero diagonals if n is odd. Applying one
step of block Gaussian elimination (or computing the Schur complement; see Golub
and Van Loan [109]) we have�

I O
�CTD�1

R I

� �
DR C
CT DB

� �
xR
xB

�
=

�
I O

�CTD�1
R I

� �
fR
fB

�
which reduces to�

DR C

O DB � CTDR
�1C

��
xR
xB

�
=

�
fR

fB � CTDR
�1fR

�
:

With proper scaling (left and right multiplication by DB
�1=2), we obtain from the

second block equation the reduced system

(I �HTH)y = g ; (5.3)

where H = D
�1=2
R CD

�1=2
B , y = D

1=2
B xB , and g = D

�1=2
B (fB �CTD�1

R fR). The linear
system (5.3) is of order n2=2 for even n and of order (n2 � 1)=2 for odd n. Once y is

86 CHAPTER 5. REMAINING TOPICS

determined, the solution x is easily retrieved from y. The values on the black points
are those that would be obtained from a red/black ordered SSOR preconditioner on
the full system, so we expect faster convergence.

The number of nonzero coe�cients is reduced, although the coe�cient matrix in
(5.3) has nine nonzero diagonals. Therefore it has higher density and o�ers more data
locality. Meier and Sameh [150] demonstrate that the reduced system approach on
hierarchical memory machines such as the Alliant FX/8 is over 3 times faster than
unpreconditioned CG for Poisson's equation on n � n grids with n � 250.

For 3-dimensional elliptic PDEs, the reduced system approach yields a block tridi-
agonal matrix C in (5.2) having diagonal blocks of the structure of C from the 2-
dimensional case and o�-diagonal blocks that are diagonal matrices. Computing the
reduced system explicitly leads to an unreasonable increase in the computational com-
plexity of solving Ax = f . The matrix products required to solve (5.3) would therefore
be performed implicitly which could signi�cantly decrease performance. However, as
Meier and Sameh show [150], the reduced system approach can still be about 2-3 times
as fast as the conjugate gradient method with Jacobi preconditioning for 3-dimensional
problems.

5.4 Domain Decomposition Methods

In recent years, much attention has been given to domain decomposition methods for
linear elliptic problems that are based on a partitioning of the domain of the physical
problem. Since the subdomains can be handled independently, such methods are very
attractive for coarse-grain parallel computers. On the other hand, it should be stressed
that they can be very e�ective even on sequential computers.

In this brief survey, we shall restrict ourselves to the standard second order self-
adjoint scalar elliptic problems in two dimensions of the form:

�r � (a(x; y)ru) = f(x; y) (5.4)

where a(x; y) is a positive function on the domain
, on whose boundary the value of
u is prescribed (the Dirichlet problem). For more general problems, and a good set of
references, the reader is referred to the series of proceedings [47, 48, 49, 107, 135, 177]
and the surveys [51, 196].

For the discretization of (5.4), we shall assume for simplicity that
 is triangulated
by a set TH of nonoverlapping coarse triangles (subdomains)
i; i = 1; :::; p with nH
internal vertices. The
i's are in turn further re�ned into a set of smaller triangles
Th with n internal vertices in total. Here H;h denote the coarse and �ne mesh size
respectively. By a standard Ritz-Galerkin method using piecewise linear triangular
basis elements on (5.4), we obtain an n � n symmetric positive de�nite linear system
Au = f .

Generally, there are two kinds of approaches depending on whether the subdomains
overlap with one another (Schwarz methods) or are separated from one another by
interfaces (Schur Complement methods, iterative substructuring).

We shall present domain decomposition methods as preconditioners for the linear
system Au = f or to a reduced (Schur Complement) system SBuB = gB de�ned
on the interfaces in the non-overlapping formulation. When used with the standard
Krylov subspace methods discussed elsewhere in this book, the user has to supply a

5.4. DOMAIN DECOMPOSITION METHODS 87

procedure for computing Av or Sw given v or w and the algorithms to be described
herein computes K�1v. The computation of Av is a simple sparse matrix-vector
multiply, but Sw may require subdomain solves, as will be described later.

5.4.1 Overlapping Subdomain Methods

In this approach, each substructure
i is extended to a larger substructure
0i con-
taining n0i internal vertices and all the triangles T 0i � Th, within a distance � from
i,
where � refers to the amount of overlap.

Let A0i; AH denote the the discretizations of (5.4) on the subdomain triangulation
T 0i and the coarse triangulation TH respectively.

Let RT
i denote the extension operator which extends (by zero) a function on T 0i

to Th and Ri the corresponding pointwise restriction operator. Similarly, let RT
H

denote the interpolation operator which maps a function on the coarse grid TH onto
the �ne grid Th by piecewise linear interpolation and RH the corresponding weighted
restriction operator.

With these notations, the Additive Schwarz Preconditioner Kas for the system
Au = f can be compactly described as:

K�1
as v = RT

HA
�1
H RHv +

pX
i=1

RT
i A

0�1
i Riv:

Note that the right hand side can be computed using p subdomain solves using the
A0i's, plus a coarse grid solve using AH , all of which can be computed in parallel. Each

term RT
i A

0�1
i Riv should be evaluated in three steps: (1) Restriction: vi = Riv, (2)

Subdomain solves for wi: A0iwi = vi, (3) Interpolation: yi = RT
i wi. The coarse grid

solve is handled in the same manner.
The theory of Dryja and Widlund [76] shows that the condition number of K�1

as A is
bounded independently of both the coarse grid size H and the �ne grid size h, provided
there is \su�cient" overlap between
i and
0i (essentially it means that the ratio �=H
of the distance � of the boundary @
0i to @
i should be uniformly bounded from below
as h ! 0.) If the coarse grid solve term is left out, then the condition number grows
as O(1=H2), reecting the lack of global coupling provided by the coarse grid.

For the purpose of implementations, it is often useful to interpret the de�nition
of Kas in matrix notation. Thus the decomposition of
 into
0i's corresponds to
partitioning of the components of the vector u into p overlapping groups of index
sets Ii's, each with n0i components. The n0i � n0i matrix A0i is simply a principal
submatrix of A corresponding to the index set Ii. RT

i is a n � n0i matrix de�ned
by its action on a vector ui de�ned on T 0i as: (RT

i ui)j = (ui)j if j 2 Ii but is zero
otherwise. Similarly, the action of its transpose Riu forms an n0i-vector by picking
o� the components of u corresponding to Ii. Analogously, RT

H is an n � nH matrix
with entries corresponding to piecewise linear interpolation and its transpose can be
interpreted as a weighted restriction matrix. If Th is obtained from TH by nested
re�nement, the action ofRH ; R

T
H can be e�ciently computed as in a standard multigrid

algorithm. Note that the matrices RT
i ; Ri; R

T
H; RH are de�ned by their actions and

need not be stored explicitly.
We also note that in this algebraic formulation, the preconditioner Kas can be

extended to any matrixA, not necessarily one arising from a discretization of an elliptic

88 CHAPTER 5. REMAINING TOPICS

problem. Once we have the partitioning index sets Ii's, the matrices Ri; A
0
i are de�ned.

Furthermore, if A is positive de�nite, then A0i is guaranteed to be nonsingular. The
di�culty is in de�ning the \coarse grid" matricesAH ; RH, which inherently depends on
knowledge of the grid structure. This part of the preconditioner can be left out, at the
expense of a deteriorating convergence rate as p increases. Radicati and Robert [178]
have experimented with such an algebraic overlapping block Jacobi preconditioner.

5.4.2 Non-overlapping Subdomain Methods

The easiest way to describe this approach is through matrix notation. The set of
vertices of Th can be divided into two groups. The set of interior vertices I of all
i
and the set of vertices B which lies on the boundaries

S
i @

0
i of the coarse triangles

0
i

in TH . We shall re-order u and f as u � (uI ; uB)T and f � (fI ; fB)T corresponding
to this partition. In this ordering, equation (5.4) can be written as follows:�

AI AIB

AT
IB AB

��
uI
uB

�
=

�
fI
fB

�
: (5.5)

We note that since the subdomains are uncoupled by the boundary vertices, AI =
blockdiagonal(Ai) is block-diagonal with each block Ai being the sti�ness matrix cor-
responding to the unknowns belonging to the interior vertices of subdomain
i.

By a block LU-factorization of A, the system in (5.5) can be written as:�
I 0

AT
IBA

�1
I I

��
AI AIB

0 SB

��
uI
uB

�
=

�
fI
fB

�
; (5.6)

where

SB � AB � AT
IBA

�1
I AIB

is the Schur complement of AB in A.

By eliminating uI in (5.6), we arrive at the following equation for uB :

SBuB = gB � fB � AIBA
�1
I fI : (5.7)

We note the following properties of this Schur Complement system:

1. SB inherits the symmetric positive de�niteness of A.

2. SB is dense in general and computing it explicitly requires as many solves on
each subdomain as there are points on each of its edges.

3. The condition number of SB is O(h�1), an improvement over the O(h�2) growth
for A.

4. Given a vector vB de�ned on the boundary vertices B of TH , the matrix-vector
product SBvB can be computed according to ABvB �AT

IB(A
�1
I (AIBvB)) where

A�1I involves p independent subdomain solves using A�1i .

5. The right hand side gB can also be computed using p independent subdomain
solves.

5.4. DOMAIN DECOMPOSITION METHODS 89

These properties make it possible to apply a preconditioned iterative method to (5.7),
which is the basic method in the nonoverlapping substructuring approach. We will
also need some good preconditioners to further improve the convergence of the Schur
system.

We shall �rst describe the Bramble-Pasciak-Schatz preconditioner [36]. For this,
we need to further decompose B into two non-overlapping index sets:

B = E [VH (5.8)

where VH =
S
k Vk denote the set of nodes corresponding to the vertices Vk's of TH ,

and E =
S
iEi denote the set of nodes on the edges Ei's of the coarse triangles in TH ,

excluding the vertices belonging to VH .
In addition to the coarse grid interpolation and restriction operators RH ; R

T
H de-

�ned before, we shall also need a new set of interpolation and restriction operators
for the edges Ei's. Let REi be the pointwise restriction operator (an nEi � n matrix,
where nEi is the number of vertices on the edge Ei) onto the edge Ei de�ned by its
action (REiuB)j = (uB)j if j 2 Ei but is zero otherwise. The action of its transpose
extends by zero a function de�ned on Ei to one de�ned on B.

Corresponding to this partition of B, S can be written in the block form:

SB =

�
SE SEV
STEV SV

�
: (5.9)

The block SE can again be block partitioned, with most of the subblocks being zero.
The diagonal blocks SEi of SE are the principal submatrices of S corresponding to Ei.
Each SEi represents the coupling of nodes on interface Ei separating two neighboring
subdomains.

In de�ning the preconditioner, the action of S�1Ei
is needed. However, as noted

before, in general SEi is a dense matrix which is also expensive to compute, and even
if we had it, it would be expensive to compute its action (we would need to compute
its inverse or a Cholesky factorization). Fortunately, many e�ciently invertible ap-
proximations to SEi have been proposed in the literature (see Keyes and Gropp [136])
and we shall use these so-called interface preconditioners for SEi instead. We mention
one speci�c preconditioner:

MEi = �EiK
1=2

where K is an nEi � nEi one dimensional Laplacian matrix, namely a tridiagonal
matrix with 2's down the main diagonal and �1's down the two o�-diagonals, and �Ei

is taken to be some average of the coe�cient a(x; y) of (5.4) on the edge Ei. We note
that since the eigen-decomposition of K is known and computable by the Fast Sine
Transform, the action of MEi can be e�ciently computed.

With these notations, the Bramble-Pasciak-Schatz preconditioner is de�ned by its
action on a vector vB de�ned on B as follows:

K�1
BPSvB = RT

HA
�1
H RHvB +

X
Ei

RT
Ei
M�1

Ei
REivB : (5.10)

Analogous to the additive Schwarz preconditioner, the computation of each term
consists of the three steps of restriction-inversion-interpolation and is independent of
the others and thus can be carried out in parallel.

90 CHAPTER 5. REMAINING TOPICS

Bramble, Pasciak and Schatz [36] prove that the condition number of K�1
BPSSB is

bounded by O(1 + log2(H=h)). In practice, there is a slight growth in the number of
iterations as h becomes small (i.e., as the �ne grid is re�ned) or as H becomes large
(i.e., as the coarse grid becomes coarser).

The log2(H=h) growth is due to the coupling of the unknowns on the edges incident
on a common vertex Vk, which is not accounted for in KBPS . Smith [191] proposed
a vertex space modi�cation to KBPS which explicitly accounts for this coupling and
therefore eliminates the dependence on H and h. The idea is to introduce further
subsets of B called vertex spaces X =

S
kXk with Xk consisting of a small set of

vertices on the edges incident on the vertex Vk and adjacent to it. Note that X
overlaps with E and VH . Let SXk be the principal submatrix of SB corresponding
to Xk, and RXk ; R

T
Xk

be the corresponding restriction (pointwise) and extension (by
zero) matrices. As before, SXk is dense and expensive to compute and factor/solve but
e�ciently invertible approximations (some using variants of the K1=2 operator de�ned
before) have been developed in the literature (see Chan, Mathew and Shao [52]).
We shall let MXk be such a preconditioner for SXk . Then Smith's Vertex Space
preconditioner is de�ned by:

K�1
V SvB = RT

HA
�1
H RHvB +

X
Ei

RT
Ei
M�1

Ei
REivB

+
X
Xk

RT
Xk
M�1

Xk
RXkvB: (5.11)

Smith [191] proved that the condition number of K�1
V SSB is bounded independent of

H and h, provided there is su�cient overlap of Xk with B.

5.4.3 Further Remarks

Multiplicative Schwarz Methods

As mentioned before, the Additive Schwarz preconditioner can be viewed as an overlap-
ping block Jacobi preconditioner. Analogously, one can de�ne a multiplicative Schwarz
preconditioner which corresponds to a symmetric block Gauss-Seidel version. That is,
the solves on each subdomain are performed sequentially, using the most current it-
erates as boundary conditions from neighboring subdomains. Even without conjugate
gradient acceleration, the multiplicative method can take many fewer iterations than
the additive version. However, the multiplicative version is not as parallelizable, al-
though the degree of parallelism can be increased by trading o� the convergence rate
through multi-coloring the subdomains. The theory can be found in Bramble, et
al. [37].

Inexact Solves

The exact solves involving A0
�1
i ; A�1i and A�1H in Kas;KBPS ;KVS can be replaced

by inexact solves ~A0
�1

i ; ~A�1i and ~A�1H , which can be standard elliptic preconditioners
themselves (e.g. multigrid, ILU, SSOR, etc.).

For the Schwarz methods, the modi�cation is straightforward and the Inexact Solve

5.5. MULTIGRID METHODS 91

Additive Schwarz Preconditioner is simply:

~K�1
as v = RT

H
~A�1H RHv +

pX
i=1

RT
i
~A0
�1

i Riv:

The Schur Complement methods require more changes to accommodate inexact
solves. By replacing A�1H by ~A�1H in the de�nitions of KBPS and KV S , we can easily

obtain inexact preconditioners ~KBPS and ~KV S for SB . The main di�culty is, however,
that the evaluation of the product SBvB requires exact subdomain solves in A�1I . One

way to get around this is to use an inner iteration using ~Ai as a preconditioner for Ai

in order to compute the action of A�1I . An alternative is to perform the iteration on
the larger system (5.5) and construct a preconditioner from the factorization in (5.6)
by replacing the terms AI ; SB by ~AI ; ~SB respectively, where ~SB can be either ~KBPS

or ~KV S . Care must be taken to scale ~AH and ~Ai so that they are as close to AH and
Ai as possible respectively | it is not su�cient that the condition number of ~A�1H AH

and ~A�1i Ai be close to unity, because the scaling of the coupling matrix AIB may be
wrong.

Nonsymmetric Problems

The preconditioners given above extend naturally to nonsymmetric A's (e.g.,
convection-di�usion problems), at least when the nonsymmetric part is not too large.
The nice theoretical convergence rates can be retained provided that the coarse grid
size H is chosen small enough (depending on the size of the nonsymmetric part of A)
(see Cai and Widlund [43]). Practical implementations (especially for parallelism) of
nonsymmetric domain decomposition methods are discussed in [137, 138].

Choice of Coarse Grid Size H

Given h, it has been observed empirically (see Gropp and Keyes [111]) that there
often exists an optimal value of H which minimizes the total computational time for
solving the problem. A small H provides a better, but more expensive, coarse grid
approximation, and requires solving more, but smaller, subdomain solves. A large H
has the opposite e�ect. For model problems, the optimal H can be determined for
both sequential and parallel implementations (see Chan and Shao [53]). In practice,
it may pay to determine a near optimal value of H empirically if the preconditioner is
to be re-used many times. However, there may also be geometric constraints on the
range of values that H can take.

5.5 Multigrid Methods

Simple iterative methods (such as the Jacobi method) tend to damp out high frequency
components of the error fastest (see x2.2.1). This has led people to develop methods
based on the following heuristic:

1. Perform some steps of a basic method in order to smooth out the error.

2. Restrict the current state of the problem to a subset of the grid points, the
so-called \coarse grid", and solve the resulting projected problem.

92 CHAPTER 5. REMAINING TOPICS

3. Interpolate the coarse grid solution back to the original grid, and perform a
number of steps of the basic method again.

Steps 1 and 3 are called \pre-smoothing" and \post-smoothing" respectively; by ap-
plying this method recursively to step 2 it becomes a true \multigrid"method. Usually
the generation of subsequently coarser grids is halted at a point where the number of
variables becomes small enough that direct solution of the linear system is feasible.

The method outlined above is said to be a \V-cycle" method, since it descends
through a sequence of subsequently coarser grids, and then ascends this sequence in
reverse order. A \W-cycle" method results from visiting the coarse grid twice, with
possibly some smoothing steps in between.

An analysis of multigrid methods is relatively straightforward in the case of simple
di�erential operators such as the Poisson operator on tensor product grids. In that
case, each next coarse grid is taken to have the double grid spacing of the previous
grid. In two dimensions, a coarse grid will have one quarter of the number of points
of the corresponding �ne grid. Since the coarse grid is again a tensor product grid,
a Fourier analysis (see for instance Briggs [42]) can be used. For the more general case
of self-adjoint elliptic operators on arbitrary domains a more sophisticated analysis
is needed (see Hackbusch [117], McCormick [148]). Many multigrid methods can be
shown to have an (almost) optimal number of operations, that is, the work involved is
proportional to the number of variables.

From the above description it is clear that iterative methods play a role in multigrid
theory as smoothers (see Kettler [133]). Conversely, multigrid-likemethods can be used
as preconditioners in iterative methods. The basic idea here is to partition the matrix
on a given grid to a 2� 2 structure

A(i) =

A
(i)
1;1 A

(i)
1;2

A
(i)
2;1 A

(i)
2;2

!
with the variables in the second block row corresponding to the coarse grid nodes. The
matrix on the next grid is then an incomplete version of the Schur complement

A(i+1) � S(i) = A
(i)
2;2 � A

(i)
2;1A

(i)�1

1;1 A
(i)
1;2:

The coarse grid is typically formed based on a red-black or cyclic reduction ordering;
see for instance Rodrigue and Wolitzer [180], and Elman [93].

Some multigrid preconditioners try to obtain optimality results similar to those for
the full multigrid method. Here we will merely supply some pointers to the literature:
Axelsson and Eijkhout [16], Axelsson and Vassilevski [23, 22], Braess [35], Maitre and
Musy [145], McCormick and Thomas [149], Yserentant [218] and Wesseling [215].

5.6 Row Projection Methods

Most iterative methods depend on spectral properties of the coe�cient matrix, for
instance some require the eigenvalues to be in the right half plane. A class of methods
without this limitation is that of row projection methods (see Bj�orck and Elfving [34],
and Bramley and Sameh [38]). They are based on a block row partitioning of the
coe�cient matrix

AT = [A1; : : : ; Am]

5.6. ROW PROJECTION METHODS 93

and iterative application of orthogonal projectors

Pix = Ai(A
T
i Ai)

�1AT
i x:

These methods have good parallel properties and seem to be robust in handling non-
symmetric and inde�nite problems.

Row projection methods can be used as preconditioners in the conjugate gradient
method. In that case, there is a theoretical connection with the conjugate gradient
method on the normal equations (see x2.3.3).

94 CHAPTER 5. REMAINING TOPICS

Appendix A

Obtaining the Software

A large body of numerical software is freely available 24 hours a day via an electronic
service called Netlib. In addition to the template material, there are dozens of
other libraries, technical reports on various parallel computers and software, test
data, facilities to automatically translate FORTRAN programs to C, bibliographies,
names and addresses of scientists and mathematicians, and so on. One can com-
municate with Netlib in one of a number of ways: by email, through anonymous
ftp (netlib2.cs.utk.edu) or (much more easily) via the World Wide Web through
some web browser like Netscape or Mosaic. The url for the Templates work is:
http://www.netlib.org/templates/ . The html version of this book can be found in:
http://www.netlib.org/templates/Templates.html .

To get started using netlib, one sends a message of the form send index to
netlib@ornl.gov. A description of the entire library should be sent to you within
minutes (providing all the intervening networks as well as the netlib server are up).

FORTRAN and C versions of the templates for each method described in this book
are available from Netlib. A user sends a request by electronic mail as follows:

mail netlib@ornl.gov

On the subject line or in the body, single or multiple requests (one per line) may be
made as follows:

send index from templates

send sftemplates.shar from templates

The �rst request results in a return e-mail message containing the index from the
library templates, along with brief descriptions of its contents. The second request
results in a return e-mail message consisting of a shar �le containing the single precision
FORTRAN routines and a README �le. The versions of the templates that are available
are listed in the table below:

95

96 APPENDIX A. OBTAINING THE SOFTWARE

shar �lename contents
sctemplates.shar Single precision C routines
dctemplates.shar Double precision C routines
sftemplates.shar Single Precision Fortran 77 routines
dftemplates.shar Double Precision Fortran 77 routines
mltemplates.shar MATLAB routines
cpptemplates.shar C++ template routines

Save the mail message to a �le called templates.shar. Edit the mail header from
this �le and delete the lines down to and including << Cut Here >>. In the directory
containing the shar �le, type

sh templates.shar

No subdirectory will be created. The unpacked �les will stay in the current directory.
Each method is written as a separate subroutine in its own �le, named after the method
(e.g., CG.f, BiCGSTAB.f, GMRES.f). The argument parameters are the same for each,
with the exception of the required matrix-vector products and preconditioner solvers
(some require the transpose matrix). Also, the amount of workspace needed varies.
The details are documented in each routine.

Note that the matrix-vector operations are accomplished using the BLAS [144]
(many manufacturers have assembly coded these kernels for maximum performance),
although a mask �le is provided to link to user de�ned routines.

The README �le gives more details, along with instructions for a test routine.

Appendix B

Overview of the BLAS

The BLAS give us a standardized set of basic codes for performing operations on
vectors and matrices. BLAS take advantage of the Fortran storage structure and the
structure of the mathematical system wherever possible. Additionally, many comput-
ers have the BLAS library optimized to their system. Here we use �ve routines:

1. SCOPY: copies a vector onto another vector

2. SAXPY: adds vector x (multiplied by a scalar) to vector y

3. SGEMV: general matrix vector product

4. STRMV: matrix vector product when the matrix is triangular

5. STRSV: solves Tx = b for triangular matrix T

The pre�x \S" denotes single precision. This pre�x may be changed to \D", \C",
or \Z", giving the routine double, complex, or double complex precision. (Of course,
the declarations would also have to be changed.) It is important to note that putting
double precision into single variables works, but single into double will cause errors.

If we de�ne ai;j = a(i,j) and xi = x(i), we can see what the code is doing:

� ALPHA = SDOT(N, X, 1, Y, 1) computes the inner product of two vectors x
and y, putting the result in scalar �.

The corresponding Fortran segment is

ALPHA = 0.0

DO I = 1, N

ALPHA = ALPHA + X(I)*Y(I)

ENDDO

� CALL SAXPY(N, ALPHA, X, 1, Y) multiplies a vector x of length n by the
scalar �, then adds the result to the vector y, putting the result in y.

The corresponding Fortran segment is

97

98 APPENDIX B. OVERVIEW OF THE BLAS

DO I = 1, N

Y(I) = ALPHA*X(I) + Y(I)

ENDDO

� CALL SGEMV('N', M, N, ONE, A, LDA, X, 1, ONE, B, 1) computes the
matrix-vector product plus vector Ax+ b, putting the resulting vector in b.

The corresponding Fortran segment:

DO J = 1, N

DO I = 1, M

B(I) = A(I,J)*X(J) + B(I)

ENDDO

ENDDO

This illustrates a feature of the BLAS that often requires close attention. For
example, we will use this routine to compute the residual vector b�Ax̂, where x̂ is
our current approximation to the solution x (merely change the fourth argument
to -1.0E0). Vector b will be overwritten with the residual vector; thus, if we
need it later, we will �rst copy it to temporary storage.

� CALL STRMV('U', 'N', 'N', N, A, LDA, X, 1) computes the matrix-
vector product Ax, putting the resulting vector in x, for upper triangular
matrix A.

The corresponding Fortran segment is

DO J = 1, N

TEMP = X(J)

DO I = 1, J

X(I) = X(I) + TEMP*A(I,J)

ENDDO

ENDDO

Note that the parameters in single quotes are for descriptions such as 'U' for `UP-
PER TRIANGULAR', 'N' for `No Transpose'. This feature will be used extensively,
resulting in storage savings (among other advantages).

The variable LDA is critical for addressing the array correctly. LDA is the leading
dimension of the two-dimensional array A, that is, LDA is the declared (or allocated)
number of rows of the two-dimensional array A.

Appendix C

Glossary

Adaptive methods Iterative methods that collect information about the coe�cient
matrix during the iteration process, and use this to speed up convergence.

Backward error The size of perturbations �A of the coe�cient matrix and �b of the
right hand side of a linear system Ax = b, such that the computed iterate x(i) is
the solution of (A+ �A)x(i) = b+ �b.

Band matrix A matrix A for which there are nonnegative constants p, q such that
ai;j = 0 if j < i � p or j > i + q. The two constants p, q are called the left and
right halfbandwidth respectively.

Black box A piece of software that can be used without knowledge of its inner work-
ings; the user supplies the input, and the output is assumed to be correct.

BLAS Basic Linear Algebra Subprograms; a set of commonly occurring vector and
matrix operations for dense linear algebra. Optimized (usually assembly coded)
implementations of the BLAS exist for various computers; these will give a higher
performance than implementation in high level programming languages.

Block factorization See: Block matrix operations.

Block matrix operations Matrix operations expressed in terms of submatrices.

Breakdown The occurrence of a zero divisor in an iterative method.

Cholesky decomposition Expressing a symmetric matrix A as a product of a lower
triangular matrix L and its transpose LT , that is, A = LLT .

Condition number See: Spectral condition number.

Convergence The fact whether or not, or the rate at which, an iterative method
approaches the solution of a linear system. Convergence can be

� Linear: some measure of the distance to the solution decreases by a constant
factor in each iteration.

� Superlinear: the measure of the error decreases by a growing factor.

99

100 APPENDIX C. GLOSSARY

� Smooth: the measure of the error decreases in all or most iterations, though
not necessarily by the same factor.

� Irregular: the measure of the error decreases in some iterations and increases
in others. This observation unfortunately does not imply anything about
the ultimate convergence of the method.

� Stalled: the measure of the error stays more or less constant during a num-
ber of iterations. As above, this does not imply anything about the ultimate
convergence of the method.

Dense matrix Matrix for which the number of zero elements is too small to warrant
specialized algorithms to exploit these zeros.

Diagonally dominant matrix See: Matrix properties

Direct method An algorithm that produces the solution to a system of linear equa-
tions in a number of operations that is determined a priori by the size of the
system. In exact arithmetic, a direct method yields the true solution to the
system. See: Iterative method.

Distributed memory See: Parallel computer.

Divergence An iterative method is said to diverge if it does not converge in a reason-
able number of iterations, or if some measure of the error grows unacceptably.
However, growth of the error as such is no sign of divergence: a method with
irregular convergence behavior may ultimately converge, even though the error
grows during some iterations.

Domain decomposition method Solution method for linear systems based on a
partitioning of the physical domain of the di�erential equation. Domain decom-
position methods typically involve (repeated) independent system solution on
the subdomains, and some way of combining data from the subdomains on the
separator part of the domain.

Field of values Given a matrix A, the �eld of values is the set fxTAx : xTx = 1g.
For symmetric matrices this is the range [�min(A); �max(A)].

Fill A position that is zero in the original matrix A but not in an exact factorization
of A. In an incomplete factorization, some �ll elements are discarded.

Forward error The di�erence between a computed iterate and the true solution of
a linear system, measured in some vector norm.

Halfbandwidth See: Band matrix.

Ill-conditioned system A linear system for which the coe�cient matrix has a large
condition number. Since in many applications the condition number is propor-
tional to (some power of) the number of unknowns, this should be understood
as the constant of proportionality being large.

IML++ A mathematical template library in C++ of iterative method for solving
linear systems.

101

Incomplete factorization A factorization obtained by discarding certain elements
during the factorization process (`modi�ed' and `relaxed' incomplete factoriza-
tion compensate in some way for discarded elements). Thus an incomplete LU
factorization of a matrix A will in general satisfy A 6= LU ; however, one hopes
that the factorization LU will be close enough to A to function as a precondi-
tioner in an iterative method.

Iterate Approximation to the solution of a linear system in any iteration of an iter-
ative method.

Iterative method An algorithm that produces a sequence of approximations to the
solution of a linear system of equations; the length of the sequence is not given
a priori by the size of the system. Usually, the longer one iterates, the closer one
is able to get to the true solution. See: Direct method.

Krylov sequence For a given matrix A and vector x, the sequence of vec-
tors fAixgi�0, or a �nite initial part of this sequence.

Krylov subspace The subspace spanned by a Krylov sequence.

LAPACK Amathematical library of linear algebra routine for dense systems solution
and eigenvalue calculations.

Lower triangular matrix Matrix A for which ai;j = 0 if j > i.

LQ factorization A way of writing a matrix A as a product of a lower triangular
matrix L and a unitary matrix Q, that is, A = LQ.

LU factorization / LU decomposition Expressing a matrix A as a product of a
lower triangular matrix L and an upper triangular matrix U , that is, A = LU .

M -Matrix See: Matrix properties.

Matrix norms See: Norms.

Matrix properties We call a square matrix A

Symmetric if ai;j = aj;i for all i, j.

Positive de�nite if it satis�es xTAx > 0 for all nonzero vectors x.

Diagonally dominant if ai;i >
P

j 6=i jai;jj; the excess amount minifai;i �P
j 6=i jai;jjg is called the diagonal dominance of the matrix.

An M -matrix if ai;j � 0 for i 6= j, and it is nonsingular with (A�1)i;j � 0 for
all i, j.

Message passing See: Parallel computer.

Multigrid method Solution method for linear systems based on restricting and ex-
trapolating solutions between a series of nested grids.

Modi�ed incomplete factorization See: Incomplete factorization.

Mutually consistent norms See: Norms.

102 APPENDIX C. GLOSSARY

Natural ordering See: Ordering of unknowns.

Nonstationary iterative method Iterative method that has iteration-dependent
coe�cients.

Normal equations For a nonsymmetric or inde�nite (but nonsingular) system of
equations Ax = b, either of the related symmetric systems (ATAx = AT b) and
(AATy = b; x = AT y). For complex A, AT is replaced with AH in the above
expressions.

Norms A function f : Rn ! R is called a vector norm if

� f(x) � 0 for all x, and f(x) = 0 only if x = 0.

� f(�x) = j�jf(x) for all �, x.
� f(x + y) � f(x) + f(y) for all x, y.

The same properties hold for matrix norms. A matrix norm and a vector norm
(both denoted k � k) are called a mutually consistent pair if for all matrices A
and vectors x

kAxk � kAk kxk:

Ordering of unknowns For linear systems derived from a partial di�erential equa-
tion, each unknown corresponds to a node in the discretization mesh. Di�erent
orderings of the unknowns correspond to permutations of the coe�cient matrix.
The convergence speed of iterative methods may depend on the ordering used,
and often the parallel e�ciency of a method on a parallel computer is strongly de-
pendent on the ordering used. Some common orderings for rectangular domains
are:

� The natural ordering; this is the consecutive numbering by rows and
columns.

� The red/black ordering; this is the numbering where all nodes with coordi-
nates (i; j) for which i+ j is odd are numbered before those for which i+ j
is even.

� The ordering by diagonals; this is the ordering where nodes are grouped in
levels for which i+j is constant. All nodes in one level are numbered before
the nodes in the next level.

For matrices from problems on less regular domains, some common orderings
are:

� The Cuthill-McKee ordering; this starts from one point, then numbers its
neighbors, and continues numbering points that are neighbors of already
numbered points. The Reverse Cuthill-McKee ordering then reverses the
numbering; this may reduce the amount of �ll in a factorization of the
matrix.

� The Minimum Degree ordering; this orders the matrix rows by increasing
numbers of nonzeros.

103

Parallel computer Computer with multiple independent processing units. If the
processors have immediate access to the same memory, the memory is said to
be shared; if processors have private memory that is not immediately visible to
other processors, the memory is said to be distributed. In that case, processors
communicate by message-passing.

Pipelining See: Vector computer.

Positive de�nite matrix See: Matrix properties.

Preconditioner An auxiliary matrix in an iterative method that approximates in
some sense the coe�cient matrix or its inverse. The preconditioner, or precon-
ditioning matrix, is applied in every step of the iterative method.

Red/black ordering See: Ordering of unknowns.

Reduced system Linear system obtained by eliminating certain variables from an-
other linear system. Although the number of variables is smaller than for the
original system, the matrix of a reduced system generally has more nonzero en-
tries. If the original matrix was symmetric and positive de�nite, then the reduced
system has a smaller condition number.

Relaxed incomplete factorization See: Incomplete factorization.

Residual If an iterative method is employed to solve for x in a linear system Ax = b,
then the residual corresponding to a vector y is Ay � b.

Search direction Vector that is used to update an iterate.

Shared memory See: Parallel computer.

Simultaneous displacements, method of Jacobi method.

Sparse matrix Matrix for which the number of zero elements is large enough that
algorithms avoiding operations on zero elements pay o�. Matrices derived from
partial di�erential equations typically have a number of nonzero elements that
is proportional to the matrix size, while the total number of matrix elements is
the square of the matrix size.

Spectral condition number The product

kAk2 � kA�1k2 = �
1=2
max(ATA)

�
1=2
min(A

TA)
;

where �max and �min denote the largest and smallest eigenvalues, respectively.
For linear systems derived from partial di�erential equations in 2D, the condition
number is proportional to the number of unknowns.

Spectral radius The spectral radius of a matrix A is maxfj�(A)jg.
Spectrum The set of all eigenvalues of a matrix.

104 APPENDIX C. GLOSSARY

Stationary iterative method Iterative method that performs in each iteration the
same operations on the current iteration vectors.

Stopping criterion Since an iterative method computes successive approximations
to the solution of a linear system, a practical test is needed to determine when to
stop the iteration. Ideally this test would measure the distance of the last iterate
to the true solution, but this is not possible. Instead, various other metrics are
used, typically involving the residual.

Storage scheme The way elements of a matrix are stored in the memory of a com-
puter. For dense matrices, this can be the decision to store rows or columns
consecutively. For sparse matrices, common storage schemes avoid storing zero
elements; as a result they involve indices, stored as integer data, that indicate
where the stored elements �t into the global matrix.

Successive displacements, method of Gauss-Seidel method.

Symmetric matrix See: Matrix properties.

Template Description of an algorithm, abstracting away from implementational de-
tails.

Tune Adapt software for a speci�c application and computing environment in order
to obtain better performance in that case only. itemize

Upper triangular matrix Matrix A for which ai;j = 0 if j < i.

Vector computer Computer that is able to process consecutive identical operations
(typically additions or multiplications) several times faster than intermixed op-
erations of di�erent types. Processing identical operations this way is called
`pipelining' the operations.

Vector norms See: Norms.

C.1 Notation

In this section, we present some of the notation we use throughout the book. We have
tried to use standard notation that would be found in any current publication on the
subjects covered.

Throughout, we follow several conventions:

� Matrices are denoted by capital letters.

� Vectors are denoted by lowercase letters.

� Lowercase Greek letters usually denote scalars, for instance

� Matrix elements are denoted by doubly indexed lowercase letter, however

� Matrix subblocks are denoted by doubly indexed uppercase letters.

C.1. NOTATION 105

We de�ne matrix A of dimension m � n and block dimension m0 � n0 as follows:

A =

264 a1;1 � � � a1;n
...

...
am;1 � � � am;n

375 (ai;j 2 R)

264 A1;1 � � � A1;n0

...
...

Am0;1 � � � Am0;n0

375 (Ai;j 2 Rmi�ni):

We de�ne vector x of dimension n as follows:

x =

264 x1
...
xn

375 xi 2 R:

Other notation is as follows:

� In�n (or simply I if the size is clear from the context) denotes the identity
matrix.

� A = diag(ai;i) denotes that matrix A has elements ai;i on its diagonal, and zeros
everywhere else.

� x
(k)
i denotes the ith element of vector x during the kth iteration

106 APPENDIX C. GLOSSARY

Bibliography

[1] J. Aarden and K.-E. Karlsson, Preconditioned CG-type methods for solving
the coupled systems of fundamental semiconductor equations, BIT, 29 (1989),
pp. 916{937.

[2] L. Adams and H. Jordan, Is SOR color-blind?, SIAM J. Sci. Statist. Comput.,
7 (1986), pp. 490{506.

[3] E. Anderson, et. al., LAPACK Users Guide, SIAM, Philadelphia, 1992.

[4] J. Appleyard and I. Cheshire, Nested factorization, in Reservoir Simulation
Symposium of the SPE, 1983. Paper 12264.

[5] M. Arioli, J. Demmel, and I. Duff, Solving sparse linear systems with sparse
backward error, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 165{190.

[6] W. Arnoldi, The principle of minimized iterations in the solution of the matrix
eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17{29.

[7] S. Ashby, CHEBYCODE: A Fortran implementation of Manteu�el's adaptive
Chebyshev algorithm, Tech. Rep. UIUCDCS-R-85-1203, University of Illinois,
1985.

[8] S. Ashby, T. Manteuffel, and J. Otto, A comparison of adaptive Cheby-
shev and least squares polynomial preconditioning for Hermitian positive de�nite
linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1{29.

[9] S. Ashby, T. Manteuffel, and P. Saylor, Adaptive polynomial precondi-
tioning for Hermitian inde�nite linear systems, BIT, 29 (1989), pp. 583{609.

[10] S. F. Ashby, T. A. Manteuffel, and P. E. Saylor, A taxonomy for con-
jugate gradient methods, SIAM J. Numer. Anal., 27 (1990), pp. 1542{1568.

[11] C. Ashcraft and R. Grimes, On vectorizing incomplete factorizations and
SSOR preconditioners, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 122{151.

[12] O. Axelsson, Incomplete block matrix factorization preconditioning methods.
The ultimate answer?, J. Comput. Appl. Math., 12&13 (1985), pp. 3{18.

[13] , A general incomplete block-matrix factorization method, Linear Algebra
Appl., 74 (1986), pp. 179{190.

107

108 BIBLIOGRAPHY

[14] O. Axelsson and A. Barker, Finite element solution of boundary value prob-
lems. Theory and computation, Academic Press, Orlando, Fl., 1984.

[15] O. Axelsson and V. Eijkhout, Vectorizable preconditioners for elliptic dif-
ference equations in three space dimensions, J. Comput. Appl. Math., 27 (1989),
pp. 299{321.

[16] , The nested recursive two-level factorization method for nine-point di�er-
ence matrices, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1373{1400.

[17] O. Axelsson and I. Gustafsson, Iterative solution for the solution of the
Navier equations of elasticity, Comput. Methods Appl. Mech. Engrg., 15 (1978),
pp. 241{258.

[18] O. Axelsson and G. Lindskog, On the eigenvalue distribution of a class of
preconditioning matrices, Numer. Math., 48 (1986), pp. 479{498.

[19] , On the rate of convergence of the preconditioned conjugate gradient
method, Numer. Math., 48 (1986), pp. 499{523.

[20] O. Axelsson and N. Munksgaard, Analysis of incomplete factorizations with
�xed storage allocation, in Preconditioning Methods { Theory and Applications,
D. Evans, ed., Gordon and Breach, New York, 1983, pp. 265{293.

[21] O. Axelsson and B. Polman, On approximate factorization methods for
block-matrices suitable for vector and parallel processors, Linear Algebra Appl.,
77 (1986), pp. 3{26.

[22] O. Axelsson and P. Vassilevski, Algebraic multilevel preconditioning meth-
ods, I, Numer. Math., 56 (1989), pp. 157{177.

[23] , Algebraic multilevel preconditioning methods, II, SIAM J. Numer. Anal.,
57 (1990), pp. 1569{1590.

[24] O. Axelsson and P. S. Vassilevski, A black box generalized conjugate gra-
dient solver with inner iterations and variable-step preconditioning, SIAM J.
Matrix Anal. Appl., 12 (1991), pp. 625{644.

[25] R. Bank, Marching algorithms for elliptic boundary value problems; II: The
variable coe�cient case, SIAM J. Numer. Anal., 14 (1977), pp. 950{970.

[26] R. Bank, T. Chan, W. Coughran Jr., and R. Smith, The Alternate-
Block-Factorization procedure for systems of partial di�erential equations, BIT,
29 (1989), pp. 938{954.

[27] R. Bank and D. Rose, Marching algorithms for elliptic boundary value prob-
lems. I: The constant coe�cient case, SIAM J. Numer. Anal., 14 (1977), pp. 792{
829.

[28] R. E. Bank and T. F. Chan, An analysis of the composite step Biconjugate
gradient method, Numerische Mathematik, 66 (1993), pp. 295{319.

BIBLIOGRAPHY 109

[29] R. E. Bank and T. F. Chan, A composite step bi-conjugate gradient algorithm
for nonsymmetric linear systems, Numer. Alg., (1994), pp. 1{16.

[30] G. Baudet, Asynchronous iterative methods for multiprocessors, J. Assoc. Com-
put. Mach., 25 (1978), pp. 226{244.

[31] R. Beauwens, On Axelsson's perturbations, Linear Algebra Appl., 68 (1985),
pp. 221{242.

[32] , Approximate factorizations with S/P consistently orderedM -factors, BIT,
29 (1989), pp. 658{681.

[33] R. Beauwens and L. Quenon, Existence criteria for partial matrix factoriza-
tions in iterative methods, SIAM J. Numer. Anal., 13 (1976), pp. 615{643.

[34] A. Bj�orck and T. Elfving, Accelerated projection methods for computing
pseudo-inverse solutions of systems of linear equations, BIT, 19 (1979), pp. 145{
163.

[35] D. Braess, The contraction number of a multigrid method for solving the Pois-
son equation, Numer. Math., 37 (1981), pp. 387{404.

[36] J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of
preconditioners for elliptic problems by substructuring, I, Mathematics of Com-
putation, 47 (1986), pp. 103{ 134.

[37] J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu, Convergence estimates
for product iterative methods with applications to domain decompositions and
multigrid, Math. Comp., 57(195) (1991), pp. 1{21.

[38] R. Bramley and A. Sameh, Row projection methods for large nonsymmetric
linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 168{193.

[39] C. Brezinski and H. Sadok, Avoiding breakdown in the CGS algorithm, Nu-
mer. Alg., 1 (1991), pp. 199{206.

[40] C. Brezinski, M. Zaglia, and H. Sadok, Avoiding breakdown and near
breakdown in Lanczos type algorithms, Numer. Alg., 1 (1991), pp. 261{284.

[41] , A breakdown free Lanczos type algorithm for solving linear systems, Nu-
mer. Math., 63 (1992), pp. 29{38.

[42] W. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, 1977.

[43] X.-C. Cai and O. Widlund, Multiplicative Schwarz algorithms for some non-
symmetric and inde�nite problems, SIAM J. Numer. Anal., 30 (1993), pp. 936{
952.

[44] T. Chan, Fourier analysis of relaxed incomplete factorization preconditioners,
SIAM J. Sci. Statist. Comput., 12 (1991), pp. 668{680.

[45] T. Chan, L. de Pillis, and H. van der Vorst, A transpose-free squared
Lanczos algorithm and application to solving nonsymmetric linear systems, Tech.
Rep. CAM 91-17, UCLA, Dept. of Math., Los Angeles, CA 90024-1555, 1991.

110 BIBLIOGRAPHY

[46] T. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, and C. Tong, A
quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric
systems, SIAM J. Sci. Comp., 15(2) (1994), pp. 338{347.

[47] T. Chan, R. Glowinski, , J. P�eriaux, and O. Widlund, eds., Domain
Decomposition Methods, Philadelphia, 1989, SIAM. Proceedings of the Second
International Symposium on Domain Decomposition Methods, Los Angeles, CA,
January 14 - 16, 1988.

[48] , eds., Domain Decomposition Methods, Philadelphia, 1990, SIAM. Pro-
ceedings of the Third International Symposiumon Domain DecompositionMeth-
ods, Houston, TX, 1989.

[49] , eds., Domain Decomposition Methods, SIAM, Philadelphia, 1991. Pro-
ceedings of the Fourth International Symposium on Domain Decomposition
Methods, Moscow, USSR, 1990.

[50] T. Chan and C.-C. J. Kuo, Two-color Fourier analysis of iterative algorithms
for elliptic problems with red/black ordering, SIAM J. Sci. Statist. Comput., 11
(1990), pp. 767{793.

[51] T. F. Chan and T. Mathew, Domain decomposition algorithms, Acta Nu-
merica, (1994), pp. 61{144.

[52] T. F. Chan, T. P. Mathew, and J. P. Shao, E�cient variants of the vertex
space domain decomposition algorithm, SIAM J. Sci. Comput., 15(6) (1994),
pp. 1349{1374.

[53] T. F. Chan and J. Shao, Optimal coarse grid size in domain decomposition,
J. Comput. Math., 12(4) (1994), pp. 291{297.

[54] D. Chazan and W. Miranker, Chaotic relaxation, Linear Algebra Appl., 2
(1969), pp. 199{222.

[55] A. Chronopoulos and C. Gear, s-step iterative methods for symmetric linear
systems, J. Comput. Appl. Math., 25 (1989), pp. 153{168.

[56] P. Concus and G. Golub, A generalized conjugate gradient method for non-
symmetric systems of linear equations, in Computer methods in Applied Sciences
and Engineering, Second International Symposium, Dec 15{19, 1975; Lecture
Notes in Economics and Mathematical Systems, Vol. 134, Berlin, New York,
1976, Springer-Verlag.

[57] P. Concus, G. Golub, and G. Meurant, Block preconditioning for the con-
jugate gradient method, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 220{252.

[58] P. Concus, G. Golub, and D. O'Leary, A generalized conjugate gradient
method for the numerical solution of elliptic partial di�erential equations, in
Sparse Matrix Computations, J. Bunch and D. Rose, eds., Academic Press, New
York, 1976, pp. 309{332.

BIBLIOGRAPHY 111

[59] P. Concus and G. H. Golub, Use of fast direct methods for the e�cient
numerical solution of nonseparable elliptic equations, SIAM J. Numer. Anal., 10
(1973), pp. 1103{1120.

[60] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric ma-
trices, in ACM Proceedings of the 24th National Conference, 1969.

[61] E. D'Azevedo, V. Eijkhout, and C. Romine, LAPACK working note 56:
Reducing communication costs in the conjugate gradient algorithm on distributed
memory multiprocessor, tech. report, Computer Science Department, University
of Tennessee, Knoxville, TN, 1993.

[62] E. D'Azevedo and C. Romine, Reducing communication costs in the con-
jugate gradient algorithm on distributed memory multiprocessors, Tech. Rep.
ORNL/TM-12192, Oak Ridge National Lab, Oak Ridge, TN, 1992.

[63] E. De Sturler, A parallel restructured version of GMRES(m), Tech. Rep.
91-85, Delft University of Technology, Delft, The Netherlands, 1991.

[64] E. De Sturler and D. R. Fokkema, Nested Krylov methods and preserving
the orthogonality, Tech. Rep. Preprint 796, Utrecht University, Utrecht, The
Netherlands, 1993.

[65] S. Demko, W. Moss, and P. Smith, Decay rates for inverses of band matrices,
Mathematics of Computation, 43 (1984), pp. 491{499.

[66] J. Demmel, The condition number of equivalence transformations that block
diagonalize matrix pencils, SIAM J. Numer. Anal., 20 (1983), pp. 599{610.

[67] J. Demmel, M. Heath, and H. van der Vorst, Parallel numerical linear
algebra, in Acta Numerica, Vol. 2, Cambridge Press, New York, 1993.

[68] S. Doi, On parallelism and convergence of incomplete LU factorizations, Appl.
Numer. Math., 7 (1991), pp. 417{436.

[69] J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling, A set of level 3
Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 16 (1990), pp. 1{17.

[70] J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson, An extended
set of FORTRAN Basic Linear Algebra Subprograms, ACM Trans. Math. Soft.,
14 (1988), pp. 1{32.

[71] J. Dongarra, I. Duff, D. Sorensen, and H. van der Vorst, Solving
Linear Systems on Vector and Shared Memory Computers, SIAM, Philadelphia,
PA, 1991.

[72] J. Dongarra and E. Grosse, Distribution of mathematical software via elec-
tronic mail, Comm. ACM, 30 (1987), pp. 403{407.

[73] J. Dongarra, C. Moler, J. Bunch, and G. Stewart, LINPACK Users'
Guide, SIAM, Philadelphia, 1979.

112 BIBLIOGRAPHY

[74] J. Dongarra and H. Van der Vorst, Performance of various computers
using standard sparse linear equations solving techniques, in Computer Bench-
marks, J. Dongarra and W. Gentzsch, eds., Elsevier Science Publishers B.V.,
New York, 1993, pp. 177{188.

[75] F. Dorr, The direct solution of the discrete Poisson equation on a rectangle,
SIAM Rev., 12 (1970), pp. 248{263.

[76] M. Dryja and O. B. Widlund, Towards a uni�ed theory of domain decompo-
sition algorithms for elliptic problems, Tech. Rep. 486, also Ultracomputer Note
167, Department of Computer Science, Courant Institute, 1989.

[77] D. Dubois, A. Greenbaum, and G. Rodrigue, Approximating the inverse
of a matrix for use in iterative algorithms on vector processors, Computing, 22
(1979), pp. 257{268.

[78] I. Duff, R. Grimes, and J. Lewis, Sparse matrix test problems, ACM Trans.
Math. Soft., 15 (1989), pp. 1{14.

[79] I. Duff and G. Meurant, The e�ect of ordering on preconditioned conjugate
gradients, BIT, 29 (1989), pp. 635{657.

[80] I. S. Duff, A. M. Erisman, and J.K.Reid, Direct methods for sparse matri-
ces, Oxford University Press, London, 1986.

[81] T. Dupont, R. Kendall, and H. Rachford, An approximate factorization
procedure for solving self-adjoint elliptic di�erence equations, SIAM J. Numer.
Anal., 5 (1968), pp. 559{573.

[82] E. D'Yakonov, The method of variable directions in solving systems of �nite
di�erence equations, Soviet Math. Dokl., 2 (1961), pp. 577{580. TOM 138, 271{
274.

[83] L. Ehrlich, An Ad-Hoc SOR method, J. Comput. Phys., 43 (1981), pp. 31{45.

[84] M. Eiermann and R. Varga, Is the optimal ! best for the SOR iteration
method?, Linear Algebra Appl., 182 (1993), pp. 257{277.

[85] V. Eijkhout, Analysis of parallel incomplete point factorizations, Linear Alge-
bra Appl., 154{156 (1991), pp. 723{740.

[86] , Beware of unperturbed modi�ed incomplete point factorizations, in Pro-
ceedings of the IMACS International Symposium on Iterative Methods in Linear
Algebra, Brussels, Belgium, R. Beauwens and P. de Groen, eds., 1992.

[87] , LAPACK working note 50: Distributed sparse data structures for linear
algebra operations, Tech. Rep. CS 92-169, Computer Science Department, Uni-
versity of Tennessee, Knoxville, TN, 1992.

[88] , LAPACK working note 51: Qualitative properties of the conjugate gradi-
ent and Lanczos methods in a matrix framework, Tech. Rep. CS 92-170, Com-
puter Science Department, University of Tennessee, Knoxville, TN, 1992.

BIBLIOGRAPHY 113

[89] V. Eijkhout and B. Polman, Decay rates of inverses of banded M -matrices
that are near to Toeplitz matrices, Linear Algebra Appl., 109 (1988), pp. 247{
277.

[90] V. Eijkhout and P. Vassilevski, Positive de�niteness aspects of vectorizable
preconditioners, Parallel Computing, 10 (1989), pp. 93{100.

[91] S. Eisenstat, E�cient implementation of a class of preconditioned conjugate
gradient methods, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 1{4.

[92] R. Elkin, Convergence theorems for Gauss-Seidel and other minimization al-
gorithms, Tech. Rep. 68-59, Computer Science Center, University of Maryland,
College Park, MD, Jan. 1968.

[93] H. Elman, Approximate Schur complement preconditioners on serial and par-
allel computers, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 581{605.

[94] H. Elman and M. Schultz, Preconditioning by fast direct methods for non
self-adjoint nonseparable elliptic equations, SIAM J. Numer. Anal., 23 (1986),
pp. 44{57.

[95] L. Elsner, A note on optimal block-scaling of matrices, Numer. Math., 44
(1984), pp. 127{128.

[96] V. Faber and T. Manteuffel, Necessary and su�cient conditions for the
existence of a conjugate gradient method, SIAM J. Numer. Anal., 21 (1984),
pp. 315{339.

[97] G. Fairweather, A. Gourlay, and A. Mitchell, Some high accuracy dif-
ference schemes with a splitting operator for equations of parabolic and elliptic
type, Numer. Math., 10 (1967), pp. 56{66.

[98] R. Fletcher, Conjugate gradient methods for inde�nite systems, in Numerical
Analysis Dundee 1975, G. Watson, ed., Berlin, New York, 1976, Springer Verlag,
pp. 73{89.

[99] G. Forsythe and E. Strauss, On best conditioned matrices, Proc. Amer.
Math. Soc., 6 (1955), pp. 340{345.

[100] R. Freund, Conjugate gradient-type methods for linear systems with com-
plex symmetric coe�cient matrices, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 425{448.

[101] R. Freund, M. Gutknecht, and N. Nachtigal, An implementation of the
look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Com-
put., 14 (1993), pp. 137{158.

[102] R. Freund and N. Nachtigal, QMR: A quasi-minimal residual method for
non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315{339.

[103] , An implementation of the QMR method based on coupled two-term recur-
rences, SIAM J. Sci. Statist. Comput., 15 (1994), pp. 313{337.

114 BIBLIOGRAPHY

[104] R. Freund and T. Szeto, A quasi-minimal residual squared algorithm for
non-Hermitian linear systems, Tech. Rep. CAM Report 92-19, UCLA Dept. of
Math., 1992.

[105] R. W. Freund, A transpose-free quasi-minimum residual algorithm for non-
Hermitian linear systems, SIAM J. Sci. Comput., 14 (1993), pp. 470{482.

[106] R. W. Freund, G. H. Golub, and N. M. Nachtigal, Iterative solution of
linear systems, Acta Numerica, (1992), pp. 57{100.

[107] R. Glowinski, G. H. Golub, G. A. Meurant, and J. P�eriaux, eds., Do-
main Decomposition Methods for Partial Di�erential Equations, SIAM, Philadel-
phia, 1988. Proceedings of the First International Symposium on Domain De-
composition Methods for Partial Di�erential Equations, Paris, France, January
1987.

[108] G. Golub and D. O'Leary, Some history of the conjugate gradient and Lanc-
zos methods, SIAM Rev., 31 (1989), pp. 50{102.

[109] G. Golub and C. Van Loan, Matrix Computations, second edition, The Johns
Hopkins University Press, Baltimore, 1989.

[110] A. Greenbaum and Z. Strakos, Predicting the behavior of �nite precision
Lanczos and conjugate gradient computations, SIAM J. Mat. Anal. Appl., 13
(1992), pp. 121{137.

[111] W. D. Gropp and D. E. Keyes, Domain decomposition with local mesh re-
�nement, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 967{993.

[112] I. Gustafsson, A class of �rst-order factorization methods, BIT, 18 (1978),
pp. 142{156.

[113] M. H. Gutknecht, The unsymmetric Lanczos algorithms and their relations to
P�ade approximation, continued fractions and the QD algorithm, in Proceedings
of the Copper Mountain Conference on Iterative Methods, 1990.

[114] , A completed theory of the unsymmetric Lanczos process and related algo-
rithms, part I, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 594{639.

[115] , Variants of Bi-CGSTAB for matrices with complex spectrum, SIAM J.
Sci. Comp., 14 (1993), pp. 1020{1033.

[116] , A completed theory of the unsymmetric Lanczos process and related algo-
rithms, part II, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 15{58.

[117] W. Hackbusch, Multi-Grid Methods and Applications, Springer-Verlag, Berlin,
New York, 1985.

[118] , Iterative L�osung gro�er schwachbesetzter Gleichungssysteme, Teubner,
Stuttgart, 1991.

[119] A. Hadjidimos, On some high accuracy di�erence schemes for solving elliptic
equations, Numer. Math., 13 (1969), pp. 396{403.

BIBLIOGRAPHY 115

[120] L. Hageman and D. Young, Applied Iterative Methods, Academic Press, New
York, 1981.

[121] W. Hager, Condition estimators, SIAM J. Sci. Statist. Comput., 5 (1984),
pp. 311{316.

[122] M. Hestenes and E. Stiefel,Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Stand., 49 (1952), pp. 409{436.

[123] M. R. Hestenes, Conjugacy and gradients, in A History of Scienti�c Comput-
ing, Addison-Wesley, Reading, MA, 1990, pp. 167{179.

[124] N. Higham, Experience with a matrix norm estimator, SIAM J. Sci. Statist.
Comput., 11 (1990), pp. 804{809.

[125] K. Jea and D. Young, Generalized conjugate-gradient acceleration of nonsym-
metrizable iterative methods, Linear Algebra Appl., 34 (1980), pp. 159{194.

[126] O. Johnson, C. Micchelli, and G. Paul, Polynomial preconditioning for
conjugate gradient calculation, SIAM J. Numer. Anal., 20 (1983), pp. 362{376.

[127] M. Jones and P. Plassmann, Parallel solution of unstructed, sparse systems
of linear equations, in Proceedings of the Sixth SIAM conference on Parallel
Processing for Scienti�c Computing, R. Sincovec, D. Keyes, M. Leuze, L. Petzold,
and D. Reed, eds., SIAM, Philadelphia, pp. 471{475.

[128] , A parallel graph coloring heuristic, SIAM J. Sci. Statist. Comput., 14
(1993), pp. 654{669.

[129] W. Joubert, Lanczos methods for the solution of nonsymmetric systems of
linear equations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 926{943.

[130] W. Kahan, Gauss-Seidel methods of solving large systems of linear equations,
PhD thesis, University of Toronto, 1958.

[131] S. Kaniel, Estimates for some computational techniques in linear algebra,
Mathematics of Computation, 20 (1966), pp. 369{378.

[132] D. Kershaw, The incomplete Cholesky-conjugate gradient method for the it-
erative solution of systems of linear equations, J. Comput. Phys., 26 (1978),
pp. 43{65.

[133] R. Kettler, Analysis and comparison of relaxation schemes in robust multigrid
and preconditioned conjugate gradient methods, in Multigrid Methods, Lecture
Notes in Mathematics 960, W. Hackbusch and U. Trottenberg, eds., Springer-
Verlag, Berlin, New York, 1982, pp. 502{534.

[134] , Linear multigrid methods in numerical reservoir simulation, PhD thesis,
Delft University of Technology, Delft, The Netherlands, 1987.

[135] D. E. Keyes, T. F. Chan, G. Meurant, J. S. Scroggs, and R. G. Voigt,
eds., Domain Decomposition Methods For Partial Di�erential Equations, SIAM,
Philadelphia, 1992. Proceedings of the Fifth International Symposium on Do-
main Decomposition Methods, Norfolk, VA, 1991.

116 BIBLIOGRAPHY

[136] D. E. Keyes and W. D. Gropp, A comparison of domain decomposition tech-
niques for elliptic partial di�erential equations and their parallel implementation,
SIAM J. Sci. Statist. Comput., 8 (1987), pp. s166 { s202.

[137] , Domain decomposition for nonsymmetric systems of equations: Exam-
ples from computational uid dynamics, in Domain Decomposition Methods,
proceedings of the Second Internation Symposium, Los Angeles, California, Jan-
uary 14{16, 1988, T. F. Chan, R. Glowinski, J. Periaux, and O. B. Widlund,
eds., Philadelphia, 1989, SIAM, pp. 373{384.

[138] , Domain decomposition techniques for the parallel solution of nonsym-
metric systems of elliptic boundary value problems, Applied Num. Math., 6
(1989/1990), pp. 281{301.

[139] S. K. Kim and A. T. Chronopoulos, A class of Lanczos-like algorithms
implemented on parallel computers, Parallel Comput., 17 (1991), pp. 763{778.

[140] D. R. Kincaid, J. R. Respess, D. M. Young, and R. G. Grimes, IT-
PACK 2C: A Fortran package for solving large sparse linear systems by adaptive
accelerated iterative methods, ACM Trans. Math. Soft., 8 (1982), pp. 302{322.
Algorithm 586.

[141] L. Y. Kolotilina and A. Y. Yeremin, On a family of two-level precondi-
tionings of the incomlete block factorization type, Sov. J. Numer. Anal. Math.
Modelling, (1986), pp. 293{320.

[142] C. Lanczos, An iteration method for the solution of the eigenvalue problem of
linear di�erential and integral operators, J. Res. Nat. Bur. Stand., 45 (1950),
pp. 255{282.

[143] , Solution of systems of linear equations by minimized iterations, J. Res.
Nat. Bur. Stand., 49 (1952), pp. 33{53.

[144] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Basic Linear Algebra
Subprograms for FORTRAN usage, ACM Trans. Math. Soft., 5 (1979), pp. 308{
325.

[145] J. Maitre and F. Musy, The contraction number of a class of two-level meth-
ods; an exact evaluation for some �nite element subspaces and model problems, in
Multigrid methods, Proceedings, K�oln-Porz, 1981, W. Hackbusch and U. Trot-
tenberg, eds., vol. 960 of Lecture Notes in Mathematics, 1982, pp. 535{544.

[146] T. Manteuffel, The Tchebychev iteration for nonsymmetric linear systems,
Numer. Math., 28 (1977), pp. 307{327.

[147] , An incomplete factorization technique for positive de�nite linear systems,
Mathematics of Computation, 34 (1980), pp. 473{497.

[148] S. McCormick,Multilevel Adaptive Methods for Partial Di�erential Equations,
SIAM, Philadelphia, 1989.

BIBLIOGRAPHY 117

[149] S. McCormick and J. Thomas, The Fast Adaptive Composite grid (FAC)
method for elliptic equations, Mathematics of Computation, 46 (1986), pp. 439{
456.

[150] U. Meier and A. Sameh, The behavior of conjugate gradient algorithms on a
multivector processor with a hierarchical memory, J. Comput. Appl. Math., 24
(1988), pp. 13{32.

[151] U. Meier-Yang, Preconditioned conjugate gradient-like methods for nonsym-
metric linear systems, tech. rep., CSRD, University of Illinois, Urbana, IL, April
1992.

[152] J. Meijerink and H. van der Vorst, An iterative solution method for linear
systems of which the coe�cient matrix is a symmetric M -matrix, Mathematics
of Computation, 31 (1977), pp. 148{162.

[153] , Guidelines for the usage of incomplete decompositions in solving sets of
linear equations as they occur in practical problems, J. Comput. Phys., 44 (1981),
pp. 134{155.

[154] R. Melhem, Toward e�cient implementation of preconditioned conjugate gra-
dient methods on vector supercomputers, Internat. J. Supercomput. Appls., 1
(1987), pp. 77{98.

[155] G. Meurant, The block preconditioned conjugate gradient method on vector
computers, BIT, 24 (1984), pp. 623{633.

[156] , Multitasking the conjugate gradient method on the CRAY X-MP/48, Par-
allel Comput., 5 (1987), pp. 267{280.

[157] N. Munksgaard, Solving sparse symmetric sets of linear equations by precondi-
tioned conjugate gradients, ACM Trans. Math. Software, 6 (1980), pp. 206{219.

[158] N. Nachtigal, S. Reddy, and L. Trefethen, How fast are nonsymmetric
matrix iterations?, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 778{795.

[159] N. Nachtigal, L. Reichel, and L. Trefethen, A hybrid GMRES algorithm
for nonsymmetric matrix iterations, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 796{825.

[160] N. M. Nachtigal, A Look-Ahead Variant of the Lanczos Algorithm and its
Application to the Quasi-Minimal Residual Methods for Non-Hermitian Linear
Systems, PhD thesis, MIT, Cambridge, MA, 1991.

[161] Y. Notay, Solving positive (semi)de�nite linear systems by preconditioned iter-
ative methods, in Preconditioned Conjugate Gradient Methods, O. Axelsson and
L. Kolotilina, eds., vol. 1457 of Lecture Notes in Mathematics, Nijmegen, 1989,
pp. 105{125.

[162] , On the robustness of modi�ed incomplete factorization methods, Internat.
J. Comput. Math., 40 (1992), pp. 121{141.

118 BIBLIOGRAPHY

[163] D. O'Leary, The block conjugate gradient algorithm and related methods, Linear
Algebra Appl., 29 (1980), pp. 293{322.

[164] , Ordering schemes for parallel processing of certain mesh problems, SIAM
J. Sci. Statist. Comput., 5 (1984), pp. 620{632.

[165] T. C. Oppe, W. D. Joubert, and D. R. Kincaid, NSPCG user's guide,
version 1.0: A package for solving large sparse linear systems by various iterative
methods, Tech. Rep. CNA{216, Center for Numerical Analysis, University of
Texas at Austin, Austin, TX, April 1988.

[166] J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems,
Plenum Press, New York and London, 1988.

[167] C. Paige, B. Parlett, and H. Van der Vorst, Approximate solutions and
eigenvalue bounds from Krylov subspaces, Numer. Lin. Alg. Appls., 29 (1995),
pp. 115{134.

[168] C. Paige and M. Saunders, Solution of sparse inde�nite systems of linear
equations, SIAM J. Numer. Anal., 12 (1975), pp. 617{629.

[169] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear
equations and sparse least squares, ACM Trans. Math. Soft., 8 (1982), pp. 43{
71.

[170] G. Paolini and G. Radicati di Brozolo, Data structures to vectorize CG
algorithms for general sparsity patterns, BIT, 29 (1989), pp. 703{718.

[171] B. Parlett, The symmetric eigenvalue problem, Prentice-Hall, London, 1980.

[172] B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lanczos al-
gorithm for unsymmetric matrices, Mathematics of Computation, 44 (1985),
pp. 105{124.

[173] D. Peaceman and j. H.H. Rachford, The numerical solution of parabolic
and elliptic di�erential equations, J. Soc. Indust. Appl. Math., 3 (1955), pp. 28{
41.

[174] C. Pommerell, Solution of Large Unsymmetric Systems of Linear Equations,
vol. 17 of Series in Micro-electronics, volume 17, Hartung-Gorre Verlag, Kon-
stanz, 1992.

[175] , Solution of large unsymmetric systems of linear equations, PhD thesis,
Swiss Federal Institute of Technology, Z�urich, Switzerland, 1992.

[176] E. Poole and J. Ortega, Multicolor ICCG methods for vector computers,
Tech. Rep. RM 86-06, Department of Applied Mathematics, University of Vir-
ginia, Charlottesville, VA, 1986.

[177] A. Quarteroni, J. Periaux, Y. Kuznetsov, and O. Widlund, eds., Do-
main Decomposition Methods in Science and Engineering,, vol. Contemporary
Mathematics 157, Providence, RI, 1994, AMS. Proceedings of the Sixth Interna-
tional Symposium on Domain Decomposition Methods, June 15-19, 1992, Como,
Italy,.

BIBLIOGRAPHY 119

[178] G. Radicati di Brozolo and Y. Robert, Vector and parallel CG-like al-
gorithms for sparse non-symmetric systems, Tech. Rep. 681-M, IMAG/TIM3,
Grenoble, France, 1987.

[179] J. Reid, On the method of conjugate gradients for the solution of large sparse
systems of linear equations, in Large Sparse Sets of Linear Equations, J. Reid,
ed., Academic Press, London, 1971, pp. 231{254.

[180] G. Rodrigue and D. Wolitzer, Preconditioning by incomplete block cyclic
reduction, Mathematics of Computation, 42 (1984), pp. 549{565.

[181] Y. Saad, The Lanczos biorthogonalization algorithm and other oblique projec-
tion methods for solving large unsymmetric systems, SIAM J. Numer. Anal., 19
(1982), pp. 485{506.

[182] , Practical use of some Krylov subspace methods for solving inde�nite and
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 203{
228.

[183] , Practical use of polynomial preconditionings for the conjugate gradient
method, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 865{881.

[184] , Preconditioning techniques for inde�nite and nonsymmetric linear sys-
tems, J. Comput. Appl. Math., 24 (1988), pp. 89{105.

[185] , Krylov subspace methods on supercomputers, SIAM J. Sci. Statist. Com-
put., 10 (1989), pp. 1200{1232.

[186] , SPARSKIT: A basic tool kit for sparse matrix computation, Tech. Rep.
CSRD TR 1029, CSRD, University of Illinois, Urbana, IL, 1990.

[187] , A exible inner-outer preconditioned GMRES algorithm, SIAM J. Sci.
Comput., 14 (1993), pp. 461{469.

[188] Y. Saad and M. Schultz, Conjugate gradient-like algorithms for solving non-
symmetric linear systems, Mathematics of Computation, 44 (1985), pp. 417{424.

[189] , GMRES: A generalized minimal residual algorithm for solving nonsym-
metric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856{869.

[190] G. L. G. Sleijpen and D. R. Fokkema, Bi-CGSTAB(`) for linear equa-
tions involving unsymmetric matrices with complex spectrum, Elec. Trans. Nu-
mer. Anal., 1 (1993), pp. 11{32.

[191] B. F. Smith, Domain decomposition algorithms for partial di�erential equations
of linear elasticity, Tech. Rep. 517, Department of Computer Science, Courant
Institute, 1990.

[192] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear sys-
tems, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 36{52.

[193] R. Southwell, Relaxation Methods in Theoretical Physics, Clarendon Press,
Oxford, 1946.

120 BIBLIOGRAPHY

[194] H. Stone, Iterative solution of implicit approximations of multidimensional par-
tial di�erential equations, SIAM J. Numer. Anal., 5 (1968), pp. 530{558.

[195] P. Swarztrauber, The methods of cyclic reduction, Fourier analysis and the
FACR algorithm for the discrete solution of Poisson's equation on a rectangle,
SIAM Rev., 19 (1977), pp. 490{501.

[196] P. L. Tallec, Domain decomposition methods in computational mechanics,
Computational Mechanics Advances, 1994.

[197] C. Tong, A comparative study of preconditioned Lanczos methods for nonsym-
metric linear systems, Tech. Rep. SAND91-8240, Sandia Nat. Lab., Livermore,
CA, 1992.

[198] A. van der Sluis, Condition numbers and equilibration of matrices, Numer.
Math., 14 (1969), pp. 14{23.

[199] A. van der Sluis and H. van der Vorst, The rate of convergence of conju-
gate gradients, Numer. Math., 48 (1986), pp. 543{560.

[200] H. van der Vorst, Iterative solution methods for certain sparse linear systems
with a non-symmetric matrix arising from PDE-problems, J. Comput. Phys., 44
(1981), pp. 1{19.

[201] , A vectorizable variant of some ICCG methods, SIAM J. Sci. Statist. Com-
put., 3 (1982), pp. 350{356.

[202] , Large tridiagonal and block tridiagonal linear systems on vector and par-
allel computers, Parallel Comput., 5 (1987), pp. 45{54.

[203] , (M)ICCG for 2D problems on vector computers, in Supercomputing,
A.Lichnewsky and C.Saguez, eds., North-Holland, 1988.

[204] , High performance preconditioning, SIAM J. Sci. Statist. Comput., 10
(1989), pp. 1174{1185.

[205] , ICCG and related methods for 3D problems on vector computers, Com-
puter Physics Communications, 53 (1989), pp. 223{235.

[206] , The convergence behavior of preconditioned CG and CG-S in the presence
of rounding errors, in Preconditioned Conjugate Gradient Methods, O. Axelsson
and L. Y. Kolotilina, eds., vol. 1457 of Lecture Notes in Mathematics, Berlin,
New York, 1990, Springer-Verlag.

[207] , Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13
(1992), pp. 631{644.

[208] H. van der Vorst and J. Melissen, A Petrov-Galerkin type method for
solving Ax = b where A is symmetric complex, IEEE Trans. Magnetics, 26
(1990), pp. 706{708.

BIBLIOGRAPHY 121

[209] H. van der Vorst and C. Vuik, GMRESR: A family of nested GMRES
methods, Numer. Lin. Alg. Applic., 1 (1994), pp. 369{386.

[210] J. Van Rosendale, Minimizing inner product data dependencies in conjugate
gradient iteration, Tech. Rep. 172178, ICASE, NASA Langley Research Center,
1983.

[211] R. Varga, Matrix Iterative Analysis, Prentice-Hall Inc., Englewood Cli�s, NJ,
1962.

[212] P. Vassilevski, Preconditioning nonsymmetric and inde�nite �nite element
matrices, J. Numer. Alg. Appl., 1 (1992), pp. 59{76.

[213] V. Voevodin, The problem of non-self-adjoint generalization of the conjugate
gradient method is closed, U.S.S.R. Comput. Maths. and Math. Phys., 23 (1983),
pp. 143{144.

[214] H. F. Walker, Implementation of the GMRES method using Householder trans-
formations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 152{163.

[215] P. Wesseling, An Introduction to Multigrid Methods, Wiley, Chichester, 1991.

[216] O. Widlund, A Lanczos method for a class of non-symmetric systems of linear
equations, SIAM J. Numer. Anal., 15 (1978), pp. 801{812.

[217] D. Young, Iterative solution of large linear systems, Academic Press, New York,
1971.

[218] H. Yserentant, On the multilevel splitting of �nite element spaces, Numer.
Math., 49 (1986), pp. 379{412.

Index

ad hoc SOR method, see method, ad
hoc SOR

asynchronous method, see method,
asynchronous

Bi-CGSTAB method, see method,
Bi-CGSTAB

Bi-Conjugate Gradient Stabilized
method, see method,
Bi-CGSTAB

bi-orthogonality
in BiCG, 22
in QMR, 23

BiCG method, see method, BiCG
BiConjugate Gradient method, see

method, BiCG
BLAS, 2, 73
block methods, 84{85
breakdown

avoiding by look-ahead, 22
in Bi-CGSTAB, 28
in BiCG, 22, 23
in CG for inde�nite systems, 17

CG method, see method, CG
CGNE method, see method, CGNE
CGNR method, see method, CGNR
CGS method, see method, CGS
chaotic method, see method,

asynchronous
Chebyshev iteration, see method,

Chebyshev iteration
codes

FORTRAN, 2
MATLAB, 2

complex systems, 57
Conjugate Gradient method, see

method, CG

Conjugate Gradient Squared method,
see method, CGS

convergence
irregular, 100
of BiCG, 22{23, 25
of CGS, 26, 27

linear, 99
of Bi-CGSTAB, 28
of BiCG, 22{23
of CG, 16
of CGNR and CGNE, 18
of CGS, 26
of Chebyshev iteration, 29
of Gauss-Seidel, 10
of Jacobi, 8{9
of MINRES, 17
of QMR, 25
of SSOR, 12
smooth, 100
of Bi-CGSTAB, 28

stalled, 100
of BiCG, 25
of GMRES, 19

superlinear, 99
of BiCG, 29
of CG, 16
of GMRES, 29

data structures, 63{76
di�usion

arti�cial, 47
domain decomposition

multiplicative Schwarz, 90{91
non-overlapping subdomains,

88{90
overlapping subdomains, 87{88
Schur complement, 86
Schwarz, 86

122

INDEX 123

�ll-in strategies, see precondi-
tioners, point incomplete
factorizations

FORTRAN codes, see codes, FORTRAN

Gauss-Seidel method, see method,
Gauss-Seidel

Generalized Minimal Residual method,
see method, GMRES

GMRES method, see method, GMRES

ill-conditioned systems
using GMRES on, 21

implementation
of Bi-CGSTAB, 28
of BiCG, 23
of CG, 16
of CGS, 27
of Chebyshev iteration, 29
of GMRES, 21
of QMR, 25

IMSL, 1
inner products

as bottlenecks, 16, 28{29
avoiding with Chebyshev, 28, 29

irregular convergence, see convergence,
irregular

ITPACK, 12

Jacobi method, see method, Jacobi

Krylov subspace, 15

Lanczos
and CG, 15, 83{84

LAPACK, 1
linear convergence, see convergence,

linear
LINPACK, 1

MATLAB codes, see codes, MATLAB
method

ad hoc SOR, 14
adaptive Chebyshev, 28, 29
asynchronous, 13
Bi-CGSTAB, 3, 7, 27{28
Bi-CGSTAB2, 28
BiCG, 3, 7, 21{23
CG, 3, 6, 14{17

block version, 85
CGNE, 3, 6, 18
CGNR, 3, 6, 18
CGS, 3, 7, 25{27
chaotic, 13, see method,

asynchronous
Chebyshev iteration, 3, 5, 7,

28{29
comparison with other methods,
28{29

spectral information required
by, 28

domain decomposition, 86{91
Gauss-Seidel, 3, 5, 8, 9{10
GMRES, 3, 6, 19{21
Jacobi, 3, 5, 8{9
MINRES, 3, 6, 17{18
of simultaneous displacements,

see method, Jacobi
of successive displacements, see

method, Gauss-Seidel
QMR, 3, 7, 23{25
relaxation, 13, 14
SOR, 3, 6, 8, 10{12
choosing ! in, 11{12

SSOR, 3, 6, 8, 12
SYMMLQ, 3, 6, 17{18

minimization property
in Bi-CGSTAB, 28
in CG, 15, 17
in MINRES, 17

MINRES method, see method,
MINRES

multigrid, 91{92

NAG, 1
nonstationary methods, 14{29
normal equations, 6

overrelaxation, 11

parallelism, 76{81
in BiCG, 23
in CG, 16
in Chebyshev iteration, 29
in GMRES, 21
in QMR, 25
inner products, 76{78

124 INDEX

matrix-vector products, 78{79
vector updates, 78

preconditioners, 39{55
ADI, 54{55
parallelism in, 55

block factorizations, 49{52
block tridiagonal, 51
central di�erences, 46
cost, 39{40
fast solvers, 54
incomplete factorization, 43{52
left, 40
point incomplete factorizations,

44{49
�ll-in strategies, 45
modi�ed, 46{47
parallelism in, 48{49
vectorization of, 47
wavefronts in, 47{49

point Jacobi, 41{42
polynomial, 52{53
reduced system, 85{86
right, 40
SSOR, 42
parallelism in, 42

symmetric part, 53{54

QMR method, see method, QMR
Quasi-Minimal Residual method, see

method, QMR

relaxation method, see method,
relaxation

residuals
in BiCG, 21
in CG, 14
orthogonality of, 14

in SYMMLQ
orthogonality of, 17

restarting
in BiCG, 23
in GMRES, 19, 21

row projection methods, 92{93

search directions
in BiCG, 21
in CG, 14, 15
A-orthogonality of, 14

smooth convergence, see convergence,
smooth

software
obtaining, 95{96

SOR method, see method, SOR
sparse matrix storage, 64{68

BCRS, 65
CCS, 65
CDS, 65{67
CRS, 64{65
JDS, 67{68
SKS, 68

SSOR method, see method, SSOR
stalled convergence, see convergence,

stalled
Stationary methods, 7{14
stopping criteria, 57{63
Successive Overrelaxation method, see

method, SOR
superlinear convergence, see conver-

gence, superlinear
Symmetric LQ method, see method,

SYMMLQ
Symmetric Successive Overrelaxation

method, see method, SSOR
SYMMLQ method, see method,

SYMMLQ

template, 1
three-term recurrence

in CG, 15
two-term recurrence, 25

underrelaxation, 11

wavefronts, see preconditioners, point
incomplete factorizations,
wavefront

