269 lines
13 KiB
C++
269 lines
13 KiB
C++
|
|
// This file is part of the Herezh++ application.
|
|
//
|
|
// The finite element software Herezh++ is dedicated to the field
|
|
// of mechanics for large transformations of solid structures.
|
|
// It is developed by Gérard Rio (APP: IDDN.FR.010.0106078.000.R.P.2006.035.20600)
|
|
// INSTITUT DE RECHERCHE DUPUY DE LÔME (IRDL) <https://www.irdl.fr/>.
|
|
//
|
|
// Herezh++ is distributed under GPL 3 license ou ultérieure.
|
|
//
|
|
// Copyright (C) 1997-2022 Université Bretagne Sud (France)
|
|
// AUTHOR : Gérard Rio
|
|
// E-MAIL : gerardrio56@free.fr
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License,
|
|
// or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty
|
|
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
// See the GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
//
|
|
// For more information, please consult: <https://herezh.irdl.fr/>.
|
|
|
|
/************************************************************************
|
|
* DATE: 17/03/2003 *
|
|
* $ *
|
|
* AUTEUR: G RIO (mailto:gerardrio56@free.fr) *
|
|
* $ *
|
|
* PROJET: Herezh++ *
|
|
* $ *
|
|
************************************************************************
|
|
* BUT: Definir La geometrie de l'hexaedre quadratique complet. *
|
|
* Fonction d'interpolation, points d'integration etc *
|
|
* $ *
|
|
* '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' * *
|
|
* VERIFICATION: *
|
|
* *
|
|
* ! date ! auteur ! but ! *
|
|
* ------------------------------------------------------------ *
|
|
* ! ! ! ! *
|
|
* $ *
|
|
* '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' *
|
|
* MODIFICATIONS: *
|
|
* ! date ! auteur ! but ! *
|
|
* ------------------------------------------------------------ *
|
|
* $ *
|
|
************************************************************************/
|
|
#ifndef GEOMHEXAQUADCOMP_H
|
|
#define GEOMHEXAQUADCOMP_H
|
|
|
|
#include"GeomHexaCom.h"
|
|
|
|
// l'élément quadratique complet
|
|
|
|
|
|
/*
|
|
// ***********************************************************************
|
|
// *
|
|
// ELEMENT DE REFERENCE , POINTS D'INTEGRATION: *
|
|
// *
|
|
// construction à partir de l'éléments quadratique incomplet *
|
|
// *
|
|
//----------------------------------------------------------------------*
|
|
//
|
|
// |zeta
|
|
// |
|
|
// 5____________20__|________8
|
|
// |\ | |\
|
|
// | \ | | \
|
|
// | 17 26 | 19
|
|
// | \ | | \
|
|
// 13 \ 25 | 16 \
|
|
// | 6\___________18___________\7
|
|
// | | | | |
|
|
// | 22 | 27 | 24 |
|
|
// | | -------------|----eta
|
|
// 1|_____|______12___\______| |
|
|
// \ 14 23 \4 15
|
|
// \ | \ \ |
|
|
// 9 | 21 \ 11 |
|
|
// \ | \ \ |
|
|
// \ | \ \ |
|
|
// 2\|___________10____\_____\|3
|
|
// \
|
|
// \xi
|
|
//
|
|
// par rapport au quadratique incomplet, 21 est au centre de la face 1,
|
|
// 22 sur la face 3, 23 sur la face 5, 24 sur la face 6
|
|
// 25 sur la face 2, 26 sur la face 4, 27 au centre de l'élément
|
|
// Points d'integration 8 par défaut
|
|
// a=1/racine(3)
|
|
// Pt1 (a,a,a) ; Pt2 (a,a,-a) ; Pt3 (a,-a,a) ; Pt4 (a,-a,-a)
|
|
// Pt5 (-a,a,a) ; Pt6 (-a,a,-a) ; Pt7 (-a,-a,a) ; Pt8 (-a,-a,-a)
|
|
//
|
|
// sinon on utilise les points d'intégrations calculés à partir du segment
|
|
// et on a 1,2x2x2, 3x3x3, 4x4x4 etc.
|
|
//
|
|
// face 1 : noeud 1 4 3 2 12 11 10 9 21, face 2 : noeud 1 5 8 4 13 20 16 12 25,
|
|
// face 3 : noeud 1 2 6 5 9 14 17 13 22, face 4 : noeud 5 6 7 8 17 18 19 20 26,
|
|
// face 5 : noeud 2 3 7 6 10 15 18 14 23, face 6 : noeud 3 4 8 7 11 16 19 15 24,
|
|
// les normales sortent des faces des elements
|
|
// on attribue 4 points d'integration par face
|
|
//
|
|
// pour les aretes on suis le fichier Elmail, 12 aretes
|
|
// 1 9 2 2 10 3 3 11 4 4 12 1
|
|
// 1 13 5 2 14 6 3 15 7 4 16 8
|
|
// 5 17 6 6 18 7 7 19 8 8 20 5
|
|
//
|
|
//
|
|
// on attribue 2 point d'integration par arete par défaut
|
|
//
|
|
// concernant la triangulation de chaque face elle est réalisée à l'aide
|
|
// de la triangulation implantée sur l'élément de référence de la face
|
|
//
|
|
//
|
|
// ************************************************************************
|
|
*/
|
|
|
|
// dans le cas où l'on sort des points d'intégrations par défaut on se sert
|
|
// d'une combinaison de segment pour recréer l'hexaèdre ce qui permet
|
|
// d'avoir 1x1x1, ou 2x2x2, ou 3x3x3, ou 4x4x4 etc. pt d'integ
|
|
|
|
// dans le cas où on utilise 27 pti, la numérotation est la suivante
|
|
// ( ici on ne représente pas le contour de l'élément)
|
|
// |zeta
|
|
// |
|
|
// 19___________22__|________25
|
|
// |\ | |\
|
|
// | \ | | \
|
|
// | 20 23 | 26
|
|
// | \ | | \
|
|
// 10 \ 13 | 16 \
|
|
// | 21\___________24___________\27
|
|
// | | | | |
|
|
// | 11 | 14 |16 |
|
|
// | | -------------|----eta
|
|
// 1|_____|______4 ___\______7 17 |
|
|
// \ 12 15 \ 18
|
|
// \ | \ \ |
|
|
// 2 | 5 \ 8 |
|
|
// \ | \ \ |
|
|
// \ | \ \ |
|
|
// 3\|___________6 ____\_____\|9
|
|
// \
|
|
// \xi
|
|
// dans le cas où on utilise 64 pti, la numérotation suit la même logique
|
|
// on va indiquer les numéros par couche
|
|
//
|
|
// couche 1) 27pti 64 pti
|
|
// *-------------* *--------------------*
|
|
// | (7) (8) (9) | | (13)(14) (15) (16) |
|
|
// | | | |
|
|
// | (4) (5) (6) | --> xi | (9) (10) (11) (12) |
|
|
// | | | | --> xi
|
|
// | (1) (2) (3) | | (5) (6) (7) (8) |
|
|
// *-------------* | |
|
|
// | (1) (2) (3) (4) |
|
|
// *--------------------*
|
|
// couche 2) 27pti 64 pti
|
|
// *----------------* *------------------------*
|
|
// | (16) (17) (18) | | (29) (30) (31) (32) |
|
|
// | | | |
|
|
// | (13) (14) (15) | --> xi | (25) (26) (27) (28) |
|
|
// | | | | --> xi
|
|
// | (10) (11) (12) | | (21) (22) (23) (24) |
|
|
// *----------------* | |
|
|
// | (17) (18) (19) (20) |
|
|
// *------------------------*
|
|
// couche 3) 27pti 64 pti
|
|
// *----------------* *------------------------*
|
|
// | (25) (26) (27) | | (45) (46) (47) (48) |
|
|
// | | | |
|
|
// | (22) (23) (24) | --> xi | (41) (42) (43) (44) |
|
|
// | | | | --> xi
|
|
// | (19) (20) (21) | | (37) (38) (39) (40) |
|
|
// *----------------* | |
|
|
// | (33) (34) (35) (36) |
|
|
// *------------------------*
|
|
// couche 4) 64 pti
|
|
// *------------------------*
|
|
// | (61) (62) (63) (64) |
|
|
// | |
|
|
// | (57) (58) (59) (60) |
|
|
// | | --> xi
|
|
// | (53) (54) (55) (56) |
|
|
// | |
|
|
// | (49) (50) (51) (52) |
|
|
// *------------------------*
|
|
|
|
// pour ne pas surcharger la figure, on indique les pti de la base
|
|
// puis uniquement sur les arêtes
|
|
// à noter qu'ici on n'indique pas le cube d'interpolation des noeuds
|
|
// qui engloble les pti !
|
|
// |zeta
|
|
// |
|
|
// 49______53_______|57______61
|
|
// |\ | |\
|
|
// |50 | | \62
|
|
//33 \ | 45 \
|
|
// | 51 | | \63
|
|
// | \ | | \
|
|
// | 52\______56_______60_______\64
|
|
//17 | | 29 |
|
|
// | | | | |
|
|
// | 36 ------------48----eta
|
|
//1|_____|_5______9 _\_____13 17 |
|
|
// \ | \ \ |
|
|
// 2 | 6 10 \ 14 32
|
|
// \ 20 \ \ |
|
|
// 3 | 7 11 \ 15 |
|
|
// \ | \ \|
|
|
// 4\|______8______12 _\______|16
|
|
// \
|
|
// \xi
|
|
//
|
|
|
|
/// @addtogroup Les_Elements_de_geometrie
|
|
/// @{
|
|
///
|
|
|
|
class GeomHexaQuadComp : public GeomHexaCom
|
|
{
|
|
public :
|
|
// CONSTRUCTEURS :
|
|
// il y a 8 points d'integration par défaut et 27 noeuds
|
|
GeomHexaQuadComp(int nbi = 8);
|
|
// de copie
|
|
GeomHexaQuadComp(const GeomHexaQuadComp& a);
|
|
// DESTRUCTEUR :
|
|
~GeomHexaQuadComp();
|
|
|
|
// création d'élément identiques : cette fonction est analogue à la fonction new
|
|
// elle y fait d'ailleurs appel. l'implantation est spécifique dans chaque classe
|
|
// dérivée
|
|
// pt est le pointeur qui est affecté par la fonction
|
|
ElemGeomC0 * newElemGeomC0(ElemGeomC0 * pt) ;
|
|
|
|
//--------- cas de coordonnees locales quelconques ----------------
|
|
// retourne les fonctions d'interpolation au point M (en coordonnees locales)
|
|
const Vecteur& Phi_point(const Coordonnee& M);
|
|
// retourne les derivees des fonctions d'interpolation au point M (en coordonnees locales)
|
|
const Mat_pleine& Dphi_point(const Coordonnee& M);
|
|
|
|
protected :
|
|
|
|
// variables de stockage transitoire, locales pour éviter de les reconstruire à chaque appel
|
|
Vecteur phi_M; // le tableau phi au point M(en coordonnees locales)
|
|
Mat_pleine dphi_M; //les derivees des fonctions d'interpolation au point M(en coordonnees locales)
|
|
|
|
// METHODES PROTEGEES :
|
|
inline double& DPHI(int i,int j,int k) { return tabDPhi(k)(i,j);};
|
|
inline double& PHI(int i,int j) {return tabPhi(j)(i); };
|
|
// because les routine de calcul de phi et dphi aux pt d'integ sont trop grandes
|
|
// on en fait des routines
|
|
void Phiphi();
|
|
void DphiDphi();
|
|
// constitution du tableau Extrapol
|
|
void Calcul_extrapol(int nbi);
|
|
|
|
};
|
|
/// @} // end of group
|
|
|
|
#endif
|