Herezh_dev/Elements/Geometrie/ElemGeom/volume/GeomHexaCubique.h
2023-05-03 17:23:49 +02:00

288 lines
14 KiB
C++
Executable file

// This file is part of the Herezh++ application.
//
// The finite element software Herezh++ is dedicated to the field
// of mechanics for large transformations of solid structures.
// It is developed by Gérard Rio (APP: IDDN.FR.010.0106078.000.R.P.2006.035.20600)
// INSTITUT DE RECHERCHE DUPUY DE LÔME (IRDL) <https://www.irdl.fr/>.
//
// Herezh++ is distributed under GPL 3 license ou ultérieure.
//
// Copyright (C) 1997-2022 Université Bretagne Sud (France)
// AUTHOR : Gérard Rio
// E-MAIL : gerardrio56@free.fr
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License,
// or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// For more information, please consult: <https://herezh.irdl.fr/>.
/************************************************************************
* DATE: 10/02/2012 *
* $ *
* AUTEUR: G RIO (mailto:gerardrio56@free.fr) *
* $ *
* PROJET: Herezh++ *
* $ *
************************************************************************
* BUT: Definir La geometrie de l'hexaedre cubique complet. *
* Fonction d'interpolation, points d'integration etc *
* $ *
* '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' * *
* VERIFICATION: *
* *
* ! date ! auteur ! but ! *
* ------------------------------------------------------------ *
* ! ! ! ! *
* $ *
* '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' *
* MODIFICATIONS: *
* ! date ! auteur ! but ! *
* ------------------------------------------------------------ *
* $ *
************************************************************************/
#ifndef GEOMHEXACUBIQUE_H
#define GEOMHEXACUBIQUE_H
#include"GeomHexaCom.h"
// l'élément cubique complet
/*
// ***********************************************************************
// *
// ELEMENT DE REFERENCE , POINTS D'INTEGRATION: *
// *
// *
//----------------------------------------------------------------------*
//
// |zeta(z)
// | noeuds internes:
// 5_______32_______|__31___8
// |\ | |\ tranche horizontale du bas
// | 25 | | 30 (17)-(37)--(40)-(23)
// 18 \ | 24 \ | | | |
// | 26 | | 29 (41)-(57)--(60)-(54)
// | \ | | \ | | | | y
// | 6\_____27_________28 _____\7 (42)-(58)--(59)-(53)
// | | | 23 | | | | |
// 17 | | | | (19)-(49)--(50)-(21)
// | 20 -------- ---- 22---eta(y) x
// 1|_____|__16_______15____ 4 | tranche horizontale du haut
// \ | \ \ | (18)-(38)--(39)-(24)
// 9 | \ 14 | | | | |
// \ 19 \ \ 21 (44)-(61)--(64)-(59)
// 10 | \ 13 | | | | | y
// \ | \ \ | (43)-(62)--(63)-(56)
// 2\|______11_______12\_____\|3 | | | |
// \ (20)-(52)--(51)-(22)
// \xi(x) x
//
//
// face 1 face 3 face 4
// z
// (1)--(16)--(15)--(4) (5)--(25)--(26)--(6) (5)--(32)--(31)--(8)
// | | | | | | | | | | | |
// (9)--(33)--(36)-(14) (18)-(44)--(43)-(20) (25)-(45)--(48)-(30)
// | | | | y | | | | x | | | | y
// (10)-(34)--(35)-(13) (17)-(41)--(42)-(19) (26)-(46)--(47)-(29)
// | | | | | | | | | | | |
// (2)--(11)--(12)--(3) (1)---(9)--(10)--(2) (6)--(27)--(28)--(7)
// x x
//
//
// face 2 face 5 face 6
// z z z
// (5)--(32)--(31)--(8) (6)--(27)--(28)--(7) (7)--(29)--(30)--(8)
// | | | | | | | | | | | |
// (18)-(38)--(39)-(24) (20)-(52)--(51)-(22) (22)-(56)--(55)-(24)
// | | | | y | | | | y x | | | |
// (17)-(37)--(40)-(23) (19)-(49)--(50)-(21) (21)-(53)--(54)-(23)
// | | | | | | | | | | | |
// (1)--(16)--(15)--(4) (2)--(11)--(12)--(3) (3)--(13)--(14)--(4)
//
//
//
//
// Points d'integration 8, 27, 64 : par exemple pour 8 pti:
// a=1/racine(3)
// Pt1 (a,a,a) ; Pt2 (a,a,-a) ; Pt3 (a,-a,a) ; Pt4 (a,-a,-a)
// Pt5 (-a,a,a) ; Pt6 (-a,a,-a) ; Pt7 (-a,-a,a) ; Pt8 (-a,-a,-a)
//
// sinon on utilise les points d'intégrations calculés à partir du segment
// et on a 1,2x2x2, 3x3x3, 4x4x4 etc.
//
// face 1 : noeud 1 4 3 2 16 15 14 13 12 11 10 9 33 36 35 34, face 2 : noeud 1 5 8 4 17 18 32 31 24 23 15 16 37 38 39 40,
// face 3 : noeud 1 2 6 5 9 10 19 20 26 25 18 17 41 42 43 44, face 4 : noeud 5 6 7 8 25 26 27 28 29 30 31 32 45 46 47 48,
// face 5 : noeud 2 3 7 6 11 12 21 22 28 27 20 19 49 50 51 52, face 6 : noeud 3 4 8 7 13 14 23 24 30 29 22 21 53 54 55 56,
// les normales sortent des faces des elements
//
// pour les aretes, 12 aretes
// 1 9 10 2 2 11 12 3 3 13 14 4 4 15 16 1
// 1 17 18 5 2 19 20 6 3 21 22 7 4 23 24 8
// 5 25 26 6 6 27 28 7 7 29 30 8 8 31 32 5
//
//
//
// concernant la triangulation de chaque face elle est réalisée à l'aide
// de la triangulation implantée sur l'élément de référence de la face
//
//
// ************************************************************************
*/
// dans le cas où l'on sort des points d'intégrations par défaut on se sert
// d'une combinaison de segment pour recréer l'hexaèdre ce qui permet
// d'avoir 1x1x1, ou 2x2x2, ou 3x3x3, ou 4x4x4 etc. pt d'integ
// dans le cas où on utilise 27 pti, la numérotation est la suivante
// ( ici on ne représente pas le contour de l'élément)
// |zeta
// |
// 19___________22__|________25
// |\ | |\
// | \ | | \
// | 20 23 | 26
// | \ | | \
// 10 \ 13 | 16 \
// | 21\___________24___________\27
// | | | | |
// | 11 | 14 |16 |
// | | -------------|----eta
// 1|_____|______4 ___\______7 17 |
// \ 12 15 \ 18
// \ | \ \ |
// 2 | 5 \ 8 |
// \ | \ \ |
// \ | \ \ |
// 3\|___________6 ____\_____\|9
// \
// \xi
// dans le cas où on utilise 64 pti, la numérotation suit la même logique
// on va indiquer les numéros par couche
//
// couche 1) 27pti 64 pti
// *-------------* *--------------------*
// | (7) (8) (9) | | (13)(14) (15) (16) |
// | | | |
// | (4) (5) (6) | --> xi | (9) (10) (11) (12) |
// | | | | --> xi
// | (1) (2) (3) | | (5) (6) (7) (8) |
// *-------------* | |
// | (1) (2) (3) (4) |
// *--------------------*
// couche 2) 27pti 64 pti
// *----------------* *------------------------*
// | (16) (17) (18) | | (29) (30) (31) (32) |
// | | | |
// | (13) (14) (15) | --> xi | (25) (26) (27) (28) |
// | | | | --> xi
// | (10) (11) (12) | | (21) (22) (23) (24) |
// *----------------* | |
// | (17) (18) (19) (20) |
// *------------------------*
// couche 3) 27pti 64 pti
// *----------------* *------------------------*
// | (25) (26) (27) | | (45) (46) (47) (48) |
// | | | |
// | (22) (23) (24) | --> xi | (41) (42) (43) (44) |
// | | | | --> xi
// | (19) (20) (21) | | (37) (38) (39) (40) |
// *----------------* | |
// | (33) (34) (35) (36) |
// *------------------------*
// couche 4) 64 pti
// *------------------------*
// | (61) (62) (63) (64) |
// | |
// | (57) (58) (59) (60) |
// | | --> xi
// | (53) (54) (55) (56) |
// | |
// | (49) (50) (51) (52) |
// *------------------------*
// pour ne pas surcharger la figure, on indique les pti de la base
// puis uniquement sur les arêtes
// à noter qu'ici on n'indique pas le cube d'interpolation des noeuds
// qui engloble les pti !
// |zeta
// |
// 49______53_______|57______61
// |\ | |\
// |50 | | \62
//33 \ | 45 \
// | 51 | | \63
// | \ | | \
// | 52\______56_______60_______\64
//17 | | 29 |
// | | | | |
// | 36 ------------48----eta
//1|_____|_5______9 _\_____13 17 |
// \ | \ \ |
// 2 | 6 10 \ 14 32
// \ 20 \ \ |
// 3 | 7 11 \ 15 |
// \ | \ \|
// 4\|______8______12 _\______|16
// \
// \xi
//
/// @addtogroup Les_Elements_de_geometrie
/// @{
///
class GeomHexaCubique : public GeomHexaCom
{
public :
// CONSTRUCTEURS :
// il y a 8 points d'integration par défaut et 27 noeuds
GeomHexaCubique(int nbi = 8);
// de copie
GeomHexaCubique(const GeomHexaCubique& a);
// DESTRUCTEUR :
~GeomHexaCubique();
// création d'élément identiques : cette fonction est analogue à la fonction new
// elle y fait d'ailleurs appel. l'implantation est spécifique dans chaque classe
// dérivée
// pt est le pointeur qui est affecté par la fonction
ElemGeomC0 * newElemGeomC0(ElemGeomC0 * pt) ;
//--------- cas de coordonnees locales quelconques ----------------
// retourne les fonctions d'interpolation au point M (en coordonnees locales)
const Vecteur& Phi_point(const Coordonnee& M);
// retourne les derivees des fonctions d'interpolation au point M (en coordonnees locales)
const Mat_pleine& Dphi_point(const Coordonnee& M);
protected :
// variables de stockage transitoire, locales pour éviter de les reconstruire à chaque appel
Vecteur phi_M; // le tableau phi au point M(en coordonnees locales)
Mat_pleine dphi_M; //les derivees des fonctions d'interpolation au point M(en coordonnees locales)
// METHODES PROTEGEES :
inline double& DPHI(int i,int j,int k) { return tabDPhi(k)(i,j);};
inline double& PHI(int i,int j) {return tabPhi(j)(i); };
// because les routine de calcul de phi et dphi aux pt d'integ sont trop grandes
// on en fait des routines
void Phiphi();
void DphiDphi();
// constitution du tableau Extrapol
void Calcul_extrapol(int nbi);
};
/// @} // end of group
#endif