Herezh_dev/herezh_pp/Elements/Mecanique/Biellette/PoutSimple1.cc

989 lines
45 KiB
C++
Executable file

// FICHIER : PoutSimple1.cc
// CLASSE : PoutSimple1
// This file is part of the Herezh++ application.
//
// The finite element software Herezh++ is dedicated to the field
// of mechanics for large transformations of solid structures.
// It is developed by Gérard Rio (APP: IDDN.FR.010.0106078.000.R.P.2006.035.20600)
// INSTITUT DE RECHERCHE DUPUY DE LÔME (IRDL) <https://www.irdl.fr/>.
//
// Herezh++ is distributed under GPL 3 license ou ultérieure.
//
// Copyright (C) 1997-2021 Université Bretagne Sud (France)
// AUTHOR : Gérard Rio
// E-MAIL : gerardrio56@free.fr
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License,
// or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// For more information, please consult: <https://herezh.irdl.fr/>.
//#include "Debug.h"
# include <iostream>
using namespace std; //introduces namespace std
#include <stdlib.h>
#include "Sortie.h"
#include "TypeConsTens.h"
#include "PoutSimple1.h"
#include "FrontPointF.h"
#include "FrontSegLine.h"
#include "DeformationP2D.h"
// ---- definition du constructeur de la classe conteneur de donnees communes ------------
PoutSimple1::DonnCommunPS1::DonnCommunPS1 (GeomSeg& segL,GeomSeg& segH,DdlElement& tab,
Met_Pout2D& met_bie,Tableau <Vecteur *> & resEr,Mat_pleine& raidEr,
Mat_pleine& mat_masse,int nbi) :
segmentL(segL),segmentH(segH),tab_ddl(tab),met_pout(met_bie)
,matGeom(tab.NbDdl(),tab.NbDdl())
,matInit(tab.NbDdl(),tab.NbDdl())
,d2_epsBB(nbi)
,resErr(resEr),raidErr(raidEr)
,matrice_masse(mat_masse)
{
int nbddl = tab.NbDdl();
for (int ni=1;ni<=nbi;ni++)
{d2_epsBB(ni).Change_taille(nbddl);
for (int i1=1; i1<= nbddl; i1++)
for (int i2=1; i2<= nbddl; i2++)
d2_epsBB(ni)(i1,i2) = NevezTenseurBB (1);
};
};
// Il ne doit exister qu'un exemplaire de la classe, donc au niveau du constructeur de copie les tableaux
// de pointeurs pointes sur les mêmes entités que la valeur passée en paramètre
PoutSimple1::DonnCommunPS1::DonnCommunPS1(DonnCommunPS1& a) :
segmentL(a.segmentL),segmentH(a.segmentH),tab_ddl(a.tab_ddl),met_pout(a.met_pout)
,matGeom(a.matGeom),matInit(a.matInit),d2_epsBB(a.d2_epsBB)
,resErr(a.resErr),raidErr(a.raidErr)
,matrice_masse(a.matrice_masse)
{};
PoutSimple1::DonnCommunPS1::DonnCommunPS1::~DonnCommunPS1()
{ int nbddl = tab_ddl.NbDdl();
int nbi=d2_epsBB.Taille();
for (int ni=1;ni<=nbi;ni++)
for (int i1=1; i1<= nbddl; i1++)
for (int i2=1; i2<= nbddl; i2++)
delete d2_epsBB(ni)(i1,i2);
};
// ---------- fin definition de la classe conteneur de donnees communes ------------
//----------------------------------------------------------------
// def des donnees commune a tous les elements
// la taille n'est pas defini ici car elle depend de la lecture
//----------------------------------------------------------------
int PoutSimple1::nbNoeud = 3; // nombre de noeud indiqué en dur
int PoutSimple1::nbintL = 2; // nombre de point d'intégration indiqué en dur sur l'axe
int PoutSimple1::nbintH = 2; // nombre de point d'intégration indiqué en dur dans
//l'épaisseur
Tableau <Vecteur> PoutSimple1::tabD2phi; // par commodité
Tableau <TenseurBB *> PoutSimple1::d_epsBB; // place pour la variation des def
Tableau <TenseurHH *> PoutSimple1::d_sigHH; // place pour la variation des sigma
PoutSimple1::DonnCommunPS1 * PoutSimple1::doCoPS1 = NULL;
int PoutSimple1::CalculResidu_t_PoutSimple1_met_abstraite = 0;
int PoutSimple1::CalculResidu_tdt_PoutSimple1_met_abstraite = 0;
int PoutSimple1::Calcul_implicit_PoutSimple1_met_abstraite = 0;
int PoutSimple1::Calcul_VarDualSort = 0;
int PoutSimple1::CalDynamique = 0;
int PoutSimple1::CalPt_0_t_tdt = 0 ; // pour le calcul de point à 0 t et tdt
PoutSimple1::ConstrucElementPoutSimple1 PoutSimple1::construcElementPoutSimple1;
// fonction privee
// dans cette fonction il ne doit y avoir que les données communes !!
void PoutSimple1::Def_DonnCommunPS1()
{ GeomSeg segmentL(nbintL,nbNoeud) ; // element geometrique correspondant de l'axe
GeomSeg segmentH(nbintH) ; // element geometrique correspondant à l'épaisseur
// par défaut le nombre de noeuds est 2
// degre de liberte
int dim = ParaGlob::Dimension();
DdlElement tab_ddl(nbNoeud,dim);
int posi = Id_nom_ddl("X1") -1;
for (int i =1; i<= ParaGlob::Dimension(); i++)
for (int j =1; j<= nbNoeud; j++)
// tab_ddl (j,i) = Enum_ddl(i+posi);
tab_ddl.Change_Enum(j,i,Enum_ddl(i+posi));
// cas des ddl éléments secondaires pour le calcul d'erreur
// les tenseurs de contrainte sont de dimension 1 a priori
// donc 1 ddl sig11
DdlElement tab_ddlErr(nbNoeud,1);
posi = Id_nom_ddl("SIG11") -1;
for (int j=1; j<= nbNoeud; j++)
// tab_ddlErr (j,1) = Enum_ddl(1+posi);
tab_ddlErr.Change_Enum(j,1,Enum_ddl(1+posi));
// def metrique
// on definit les variables a priori toujours utiles
Tableau<Enum_variable_metrique> tab(24);
tab(1) = iM0; tab(2) = iMt; tab(3) = iMtdt ;
tab(4) = igiB_0; tab(5) = igiB_t; tab(6) = igiB_tdt;
tab(7) = igiH_0; tab(8) = igiH_t; tab(9) = igiH_tdt ;
tab(10)= igijBB_0; tab(11)= igijBB_t; tab(12)= igijBB_tdt;
tab(13)= igijHH_0; tab(14)= igijHH_t; tab(15)= igijHH_tdt ;
tab(16)= id_gijBB_tdt; tab(17)= id_giH_tdt; tab(18)= id_gijHH_tdt;
tab(19)= idMtdt ; tab(20)= id_jacobien_tdt;tab(21)= id2_gijBB_tdt;
tab(22)= igradVBB_tdt; tab(23) = iVtdt; tab(24)= idVtdt;
// dim du pb , nb de vecteur de la base = 1 ici,
// , tableau de ddl et la def de variables
Met_Pout2D metri(ParaGlob::Dimension(),1,tab_ddl,tab,nbNoeud) ;
// ---- cas du calcul d'erreur sur sigma ou epsilon
Tableau <Vecteur *> resEr(nbNoeud);
for (int i=1; i<= nbNoeud; i++)
resEr(i)=new Vecteur (1); // tenseur à une dimension
Mat_pleine raidEr(nbNoeud,nbNoeud); // la raideur pour l'erreur
// cas de la dynamique
Mat_pleine matmasse(1,nbNoeud); // a priori on dimensionne en diagonale
// definition de la classe static contenant toute les variables communes aux PoutSimple1s
doCoPS1 = new DonnCommunPS1(segmentL,segmentH,tab_ddl,metri,resEr,raidEr,matmasse,nbintL*nbintH);
//dimensionnement des variations des deformations
int nbddl = tab_ddl.NbDdl();
d_epsBB.Change_taille(nbddl);
d_sigHH.Change_taille(nbddl);
for (int i=1; i<= nbddl; i++)
{ d_epsBB(i) = NevezTenseurBB (1);
d_sigHH(i) = NevezTenseurHH (1);
}
};
PoutSimple1::PoutSimple1 () :
// Constructeur par defaut
PiPoCo(),lesPtMecaInt(),donnee_specif()
{ lesPtIntegMecaInterne = &lesPtMecaInt; // association avec le pointeur d'ElemMeca
int dim = ParaGlob::Dimension();
if (dim != 2)
{ if (ParaGlob::NiveauImpression() >= 7)
{cout << "\n attention !!, l'element PoutSimple1 n'est pas utilisable car \n"
"seul la dimension 2 est acceptable pour cet element \n";
}
return;
}
id_interpol=CUBIQUE; // donnees de la classe mere
id_geom=PS1; //
// stockage des donnees particulieres de la loi de comportement mécanique au point d'integ
tabSaveDon.Change_taille(nbintL*nbintH);
// stockage des donnees particulieres de la loi de comportement thermo mécanique au point d'integ
tabSaveTP.Change_taille(nbintL*nbintH);
// stockage des donnees particulieres de la déformation mécanique au point d'integ
tabSaveDefDon.Change_taille(nbintL*nbintH);
tab_energ.Change_taille(nbintL*nbintH);
tab_energ_t.Change_taille(nbintL*nbintH);
tab_noeud.Change_taille(nbNoeud);
// le fait de mettre les pointeurs a null permet
// de savoir que l'element n'est pas complet
for (int i=1; i<= nbNoeud; i++)
tab_noeud(i) = NULL;
// definition des donnees communes aux PoutSimple1s
// a la premiere definition d'une PoutSimple1
if (doCoPS1 == NULL) Def_DonnCommunPS1();
met = &(doCoPS1->met_pout); // met est defini dans elemeca
// --- cas de la dynamique -----
mat_masse = &(doCoPS1->matrice_masse);
// pour les dérivées secondes, transformation de tableau en vecteur
tabD2phi.Change_taille((doCoPS1->segmentL).taD2phi().Taille());
for (int i=1;i<= (doCoPS1->segmentL).taD2phi().Taille(); i++)
tabD2phi(i) = ((doCoPS1->segmentL).taD2phi())(i).Ligne(1);
// def pointe sur la deformation specifique a l'element
def = new DeformationP2D(*met,tab_noeud
,(doCoPS1->segmentH).TaDphi(),(doCoPS1->segmentH).TaPhi()
,(doCoPS1->segmentL).TaDphi(),(doCoPS1->segmentL).TaPhi()
,tabD2phi);
// idem pour la masse ici par simplicité
defMas = new DeformationP2D(*met,tab_noeud
,(doCoPS1->segmentH).TaDphi(),(doCoPS1->segmentH).TaPhi()
,(doCoPS1->segmentL).TaDphi(),(doCoPS1->segmentL).TaPhi()
,tabD2phi);
//dimensionnement des deformations et contraintes etc..
int dimtens = 1;
lesPtMecaInt.Change_taille_PtIntegMeca(nbintL*nbintH,dimtens);
// attribution des numéros de référencement dans le conteneur
for (int ni = 1; ni<= nbintL*nbintH; ni++)
{lesPtMecaInt(ni).Change_Nb_mail(this->num_maillage);
lesPtMecaInt(ni).Change_Nb_ele(this->num_elt);
lesPtMecaInt(ni).Change_Nb_pti(ni);
};
};
PoutSimple1::PoutSimple1 (double epais,double larg,int num_mail,int num_id):
// Constructeur utile si la hauteur, la largeur de l'element et
// le numero de l'element sont connus
PiPoCo(num_mail,num_id,CUBIQUE,PS1),lesPtMecaInt()
,donnee_specif(epais,larg)
{ lesPtIntegMecaInterne = &lesPtMecaInt; // association avec le pointeur d'ElemMeca
int dim = ParaGlob::Dimension();
if (dim != 2)
{ if (ParaGlob::NiveauImpression() >= 7)
{cout << "\n attention !!, l'''\'element PoutSimple1 n''' est pas utilisable car \n"
"seul la dimension 2 est acceptable pour cet élément \n";
}
return;
}
// stockage des donnees particulieres de la loi de comportement mécanique au point d'integ
tabSaveDon.Change_taille(nbintL*nbintH);
// stockage des donnees particulieres de la loi de comportement thermo mécanique au point d'integ
tabSaveTP.Change_taille(nbintL*nbintH);
// stockage des donnees particulieres de la déformation mécanique au point d'integ
tabSaveDefDon.Change_taille(nbintL*nbintH);
tab_energ.Change_taille(nbintL*nbintH);
tab_energ_t.Change_taille(nbintL*nbintH);
tab_noeud.Change_taille(nbNoeud);
// le fait de mettre les pointeurs a null permet
// de savoir que l'element n'est pas complet
for (int i=1; i<= nbNoeud; i++)
tab_noeud(i) = NULL;
// definition des donnees communes aux PoutSimple1s
// a la premiere definition d'une PoutSimple1
if (doCoPS1 == NULL) Def_DonnCommunPS1();
met = &(doCoPS1->met_pout);// met est defini dans elemeca
// --- cas de la dynamique -----
mat_masse = &(doCoPS1->matrice_masse);
// pour les dérivées secondes, transformation de tableau en vecteur
tabD2phi.Change_taille((doCoPS1->segmentL).taD2phi().Taille());
for (int i=1;i<= (doCoPS1->segmentL).taD2phi().Taille(); i++)
tabD2phi(i) = ((doCoPS1->segmentL).taD2phi())(i).Ligne(1);
// def pointe sur la deformation specifique a l'element
def = new DeformationP2D(*met,tab_noeud
,(doCoPS1->segmentH).TaDphi(),(doCoPS1->segmentH).TaPhi()
,(doCoPS1->segmentL).TaDphi(),(doCoPS1->segmentL).TaPhi()
,tabD2phi);
//dimensionnement des deformations et contraintes etc..
int dimtens = 1;
lesPtMecaInt.Change_taille_PtIntegMeca(nbintL*nbintH,dimtens);
// attribution des numéros de référencement dans le conteneur
for (int ni = 1; ni<= nbintL*nbintH; ni++)
{lesPtMecaInt(ni).Change_Nb_mail(this->num_maillage);
lesPtMecaInt(ni).Change_Nb_ele(this->num_elt);
lesPtMecaInt(ni).Change_Nb_pti(ni);
};
};
// Constructeur fonction d'un numero de maillage et d'identification
PoutSimple1::PoutSimple1 (int num_mail,int num_id) :
PiPoCo(num_mail,num_id,CUBIQUE,PS1),lesPtMecaInt(),donnee_specif()
{ lesPtIntegMecaInterne = &lesPtMecaInt; // association avec le pointeur d'ElemMeca
int dim = ParaGlob::Dimension();
if (dim != 2)
{ if (ParaGlob::NiveauImpression() >= 7)
{cout << "\n attention !!, l'''\'element PoutSimple1 n''' est pas utilisable car \n"
"seul la dimension 2 est acceptable pour cet élément \n";
}
return;
}
// stockage des donnees particulieres de la loi de comportement mécanique au point d'integ
tabSaveDon.Change_taille(nbintL*nbintH);
// stockage des donnees particulieres de la loi de comportement thermo mécanique au point d'integ
tabSaveTP.Change_taille(nbintL*nbintH);
// stockage des donnees particulieres de la déformation mécanique au point d'integ
tabSaveDefDon.Change_taille(nbintL*nbintH);
tab_energ.Change_taille(nbintL*nbintH);
tab_energ_t.Change_taille(nbintL*nbintH);
tab_noeud.Change_taille(nbNoeud);
// le fait de mettre les pointeurs a null permet
// de savoir que l'element n'est pas complet
for (int i=1; i<= nbNoeud; i++)
tab_noeud(i) = NULL;
// definition des donnees communes aux PoutSimple1s
// a la premiere definition d'une PoutSimple1
if (doCoPS1 == NULL) Def_DonnCommunPS1();
met = &(doCoPS1->met_pout);// met est defini dans elemeca
// --- cas de la dynamique -----
mat_masse = &(doCoPS1->matrice_masse);
// pour les dérivées secondes, transformation de tableau en vecteur
tabD2phi.Change_taille((doCoPS1->segmentL).taD2phi().Taille());
for (int i=1;i<= (doCoPS1->segmentL).taD2phi().Taille(); i++)
tabD2phi(i) = ((doCoPS1->segmentL).taD2phi())(i).Ligne(1);
// def pointe sur la deformation specifique a l'element
def = new DeformationP2D(*met,tab_noeud
,(doCoPS1->segmentH).TaDphi(),(doCoPS1->segmentH).TaPhi()
,(doCoPS1->segmentL).TaDphi(),(doCoPS1->segmentL).TaPhi()
,tabD2phi);
//dimensionnement des deformations et contraintes etc..
int dimtens = 1;
lesPtMecaInt.Change_taille_PtIntegMeca(nbintL*nbintH,dimtens);
// attribution des numéros de référencement dans le conteneur
for (int ni = 1; ni<= nbintL*nbintH; ni++)
{lesPtMecaInt(ni).Change_Nb_mail(this->num_maillage);
lesPtMecaInt(ni).Change_Nb_ele(this->num_elt);
lesPtMecaInt(ni).Change_Nb_pti(ni);
};
};
PoutSimple1::PoutSimple1 (double epais,double larg,int num_mail,int num_id,const Tableau<Noeud *>& tab):
// Constructeur utile si la hauteur, la largeur de l'element, le numero de l'element et
// le tableau des noeuds sont connus
PiPoCo(num_mail,num_id,tab,CUBIQUE,PS1),lesPtMecaInt()
,donnee_specif(epais,larg)
{ lesPtIntegMecaInterne = &lesPtMecaInt; // association avec le pointeur d'ElemMeca
int dim = ParaGlob::Dimension();
if (dim != 2)
{ if (ParaGlob::NiveauImpression() >= 7)
{cout << "\n attention !!, l'''\'element PoutSimple1 n''' est pas utilisable car \n"
"seul la dimension 2 est acceptable pour cet élément \n";
}
return;
}
// stockage des donnees particulieres de la loi de comportement mécanique au point d'integ
tabSaveDon.Change_taille(nbintL*nbintH);
// stockage des donnees particulieres de la loi de comportement thermo mécanique au point d'integ
tabSaveTP.Change_taille(nbintL*nbintH);
// stockage des donnees particulieres de la déformation mécanique au point d'integ
tabSaveDefDon.Change_taille(nbintL*nbintH);
tab_energ.Change_taille(nbintL*nbintH);
tab_energ_t.Change_taille(nbintL*nbintH);
if (tab_noeud.Taille() != nbNoeud)
{ cout << "\n erreur de dimensionnement du tableau de noeud \n";
cout << " PoutSimple1::PoutSimple1 (double sect,int num_id,const Tableau<Noeud *>& tab)\n";
Sortie (1); }
// definition des donnees communes aux PoutSimple1s
// a la premiere definition d'une PoutSimple1
if (doCoPS1 == NULL) Def_DonnCommunPS1();
met = &(doCoPS1->met_pout);// met est defini dans elemeca
// --- cas de la dynamique -----
mat_masse = &(doCoPS1->matrice_masse);
// pour les dérivées secondes, transformation de tableau en vecteur
tabD2phi.Change_taille((doCoPS1->segmentL).taD2phi().Taille());
for (int i=1;i<= (doCoPS1->segmentL).taD2phi().Taille(); i++)
tabD2phi(i) = ((doCoPS1->segmentL).taD2phi())(i).Ligne(1);
// def pointe sur la deformation specifique a l'element
def = new DeformationP2D(*met,tab_noeud
,(doCoPS1->segmentH).TaDphi(),(doCoPS1->segmentH).TaPhi()
,(doCoPS1->segmentL).TaDphi(),(doCoPS1->segmentL).TaPhi()
,tabD2phi);
//dimensionnement des deformations et contraintes etc..
int dimtens = 1;
lesPtMecaInt.Change_taille_PtIntegMeca(nbintL*nbintH,dimtens);
// attribution des numéros de référencement dans le conteneur
for (int ni = 1; ni<= nbintL*nbintH; ni++)
{lesPtMecaInt(ni).Change_Nb_mail(this->num_maillage);
lesPtMecaInt(ni).Change_Nb_ele(this->num_elt);
lesPtMecaInt(ni).Change_Nb_pti(ni);
};
// construction du tableau de ddl des noeuds de PoutSimple1
ConstTabDdl();
};
PoutSimple1::PoutSimple1 (const PoutSimple1& pout) :
PiPoCo (pout),lesPtMecaInt(pout.lesPtMecaInt),donnee_specif(pout.donnee_specif)
// Constructeur de copie
{ lesPtIntegMecaInterne = &lesPtMecaInt; // association avec le pointeur d'ElemMeca
// stockage des donnees particulieres de la loi de comportement au point d'integ
// tabSaveDon.Change_taille(1);
*(residu) = *(pout.residu);
*(raideur) = *(pout.raideur);
// met = (pout.met); // la métrique est commune
// *def = *(pout.def);
};
PoutSimple1::~PoutSimple1 ()
// Destructeur
{ // dans le cas ou on est en dimension 3, il n'y a rien de créé
// donc pas de delete
if (ParaGlob::Dimension() != 2) return;
// cas normal
LibereTenseur();
};
// Lecture des donnees de la classe sur fichier
void
PoutSimple1::LectureDonneesParticulieres
(UtilLecture * entreePrinc,Tableau<Noeud *> * tabMaillageNoeud)
{ int nb;
tab_noeud.Change_taille(nbNoeud);
for (int i=1; i<= nbNoeud; i++)
{ *(entreePrinc->entree) >> nb;
if ((entreePrinc->entree)->rdstate() == 0)
// pour mémoire ici on a
/* enum io_state
{ badbit = 1<<0, // -> 1 dans rdstate()
eofbit = 1<<1, // -> 2
failbit = 1<<2, // -> 4
goodbit = 0 // -> O
};*/
tab_noeud(i) = (*tabMaillageNoeud)(nb); // lecture normale
#ifdef ENLINUX
else if ((entreePrinc->entree)->fail())
// on a atteind la fin de la ligne et on appelle un nouvel enregistrement
{ entreePrinc->NouvelleDonnee(); // lecture d'un nouvelle enregistrement
*(entreePrinc->entree) >> nb;
tab_noeud(i) = (*tabMaillageNoeud)(nb); // lecture normale
}
#else
/* #ifdef SYSTEM_MAC_OS_X_unix
else if ((entreePrinc->entree)->fail())
// on a atteind la fin de la ligne et on appelle un nouvel enregistrement
{ entreePrinc->NouvelleDonnee(); // lecture d'un nouvelle enregistrement
*(entreePrinc->entree) >> nb;
tab_noeud(i) = (*tabMaillageNoeud)(nb); // lecture normale
}
#else*/
else if ((entreePrinc->entree)->eof())
// la lecture est bonne mais on a atteind la fin de la ligne
{ tab_noeud(i) = (*tabMaillageNoeud)(nb); // lecture
// si ce n'est pas la fin de la lecture on appelle un nouvel enregistrement
if (i != nbNoeud) entreePrinc->NouvelleDonnee(); // lecture d'un nouvelle enregistrement
}
// #endif
#endif
else // cas d'une erreur de lecture
{ cout << "\n erreur de lecture inconnue ";
entreePrinc->MessageBuffer("** lecture des données particulières **");
cout << "PoutSimple1::LectureDonneesParticulieres";
Affiche();
Sortie (1);
}
}
// construction du tableau de ddl des noeuds de PoutSimple1
ConstTabDdl();
};
// calcul d'un point dans l'élément réel en fonction des coordonnées dans l'élément de référence associé
// temps: indique si l'on veut les coordonnées à t = 0, ou t ou tdt
// 1) cas où l'on utilise la place passée en argument
Coordonnee & PoutSimple1::Point_physique(const Coordonnee& ,Coordonnee & co ,Enum_dure )
{ /*// a) on commence par définir les bonnes grandeurs dans la métrique
if( PoutSimple1::CalPt_0_t_tdt == 0)
{ PoutSimple1::CalPt_0_t_tdt = 1;
Tableau<Enum_variable_metrique> tab(3);
tab(1)=iM0;tab(2)=iMt;tab(3)=iMtdt;
doCoPS1->met_pout.PlusInitVariables(tab) ;
};
// b) calcul de l'interpolation
const Vecteur& phix = doCoPS1->segmentL->Phi(c_int(1)); // en x
const Vecteur& phiy = doCoPS1->segmentH->Phi(c_int(2)); // en hauteur
// c) calcul du point
switch (temps)
{ case TEMPS_0 : co = met->PointM_0(tab_noeud,phi); break;
case TEMPS_t : co = met->PointM_t(tab_noeud,phi); break;
case TEMPS_tdt : co = met->PointM_tdt(tab_noeud,phi); break;
}
// d) retour*/
cout << "\n methode non implantee pour l'instant !"
<< "\n Coordonnee & PoutSimple1::Point_physique(...";
Sortie(1);
return co;
};
// 3) cas où l'on veut les coordonnées aux 1, 2 ou trois temps selon la taille du tableau t_co
void PoutSimple1::Point_physique(const Coordonnee& ,Tableau <Coordonnee> & )
{ /*t_co.Change_taille(3);
// a) on commence par définir les bonnes grandeurs dans la métrique
if( PoutSimple1::CalPt_0_t_tdt == 0)
{ PoutSimple1::CalPt_0_t_tdt = 1;
Tableau<Enum_variable_metrique> tab(3);
tab(1)=iM0;tab(2)=iMt;tab(3)=iMtdt;
doCoPS1->met_pout.PlusInitVariables(tab) ;
};
// b) calcul de l'interpolation
const Vecteur& phi = doCoPS1->hexaed->Phi(c_int);
// c) calcul des point
switch (t_co.Taille())
{ case 3 : t_co(3) = met->PointM_tdt(tab_noeud,phi);
case 2 : t_co(2) = met->PointM_t(tab_noeud,phi);
case 1 : t_co(1) = met->PointM_0(tab_noeud,phi);
} */
cout << "\n methode non implantee pour l'instant !"
<< "\n void PoutSimple1::Point_physique(...";
Sortie(1);
};
// Calcul du residu local à t ou tdt en fonction du booleen atdt
Vecteur* PoutSimple1::CalculResidu (bool atdt,const ParaAlgoControle & pa)
{ // dimensionnement de la metrique
if (!atdt)
{if( CalculResidu_t_PoutSimple1_met_abstraite == 0)
{ CalculResidu_t_PoutSimple1_met_abstraite = 1;
Tableau<Enum_variable_metrique> tab(8);
tab(1) = igiB_0; tab(2) = igiB_t; tab(3) = igijBB_0;tab(4) = igijBB_t;
tab(5) = igijHH_t; tab(6) = id_giB_t; tab(7) = id_gijBB_t ;
tab(8) = igradVBB_t;
doCoPS1->met_pout.PlusInitVariables(tab) ;
};}
else
{if( CalculResidu_tdt_PoutSimple1_met_abstraite == 0)
{CalculResidu_tdt_PoutSimple1_met_abstraite = 1;
Tableau<Enum_variable_metrique> tab(10);
tab(1) = igiB_0; tab(2) = igiB_t; tab(3) = igiB_tdt;
tab(4) = igijBB_0;tab(5) = igijBB_t;tab(6) = igijBB_tdt;
tab(7) = igijHH_tdt; tab(8) = id_giB_tdt; tab(9) = id_gijBB_tdt ;
tab(10) = igradVBB_tdt;
doCoPS1->met_pout.PlusInitVariables(tab) ;
};};
// dimensionnement du residu
int nbddl = doCoPS1->tab_ddl.NbDdl();
if ( residu == NULL)
residu = new Vecteur(nbddl); // cas du premier passage
else
for (int i =1; i<= nbddl; i++) // cas des autres passages
(*residu)(i) = 0.; // on initialise a zero
Vecteur poidsL =(doCoPS1->segmentL).TaWi(); // poids d'intergration sur l'axe
Vecteur poidsH =(doCoPS1->segmentH).TaWi(); // poids d'intergration dans l'épaisseur
poidsL *= donnee_specif.largeur; // en fait il n'y a pas d'intégration suivant la largeur
poidsH *= 0.5 * donnee_specif.epaisseur; // car le domaine d'intégration dans l'épaisseur
// suivant l'élément de référence est 2
PiPoCo::Cal_explicitPiPoCo (doCoPS1->tab_ddl,d_epsBB,nbintL,poidsL,nbintH,poidsH,pa,atdt);
return residu;
};
// Calcul du residu local et de la raideur locale,
// pour le schema implicite
Element::ResRaid PoutSimple1::Calcul_implicit (const ParaAlgoControle & pa)
{
bool cald_Dvirtuelle = false;
if( Calcul_implicit_PoutSimple1_met_abstraite == 0)
{ Tableau<Enum_variable_metrique> tab(15);
tab(1) = igiB_0; tab(2) = igiB_t; tab(3) = igiB_tdt; tab(4) = igijBB_0;
tab(5) = igijBB_t;tab(6) = igijBB_tdt; tab(7) = igijHH_tdt; tab(8) = id_giB_tdt;
tab(9) = id_gijBB_tdt ;tab(10) = igiH_tdt;tab(11) = id_giH_tdt;
tab(12) = id_gijHH_tdt;tab(13) = id_jacobien_tdt;tab(14) = id2_gijBB_tdt;
tab(15) = igradVBB_tdt;
doCoPS1->met_pout.PlusInitVariables(tab) ;
Calcul_implicit_PoutSimple1_met_abstraite = 1;
// on ne calcul la dérivée de la déformation virtuelle qu'une fois
// car elle est constante dans le temps et indépendante des coordonnées
cald_Dvirtuelle=true;
};
// dimensionnement du residu
int nbddl = doCoPS1->tab_ddl.NbDdl();
if ( residu == NULL)
residu = new Vecteur(nbddl); // cas du premier passage
else
for (int i =1; i<= nbddl; i++) // cas des autres passages
(*residu)(i) = 0.; // on initialise a zero
// dimensionnement de la raideur
if ( raideur == NULL)
raideur = new Mat_pleine(nbddl,nbddl); // cas du premier passage
else
for (int i =1; i<= nbddl; i++) // cas des autres passages
for (int j=1; j<= nbddl; j++) //
(*raideur)(i,j) = 0.; // on initialise a zero
Vecteur poidsL =(doCoPS1->segmentL).TaWi(); // poids d'intergration sur l'axe
Vecteur poidsH =(doCoPS1->segmentH).TaWi(); // poids d'intergration dans l'épaisseur
poidsL *= donnee_specif.largeur; // en fait il n'y a pas d'intégration suivant la largeur
poidsH *= 0.5 * donnee_specif.epaisseur; // 0.5 car le domaine d'intégration dans l'épaisseur
// suivant l'élément de référence est 2
PiPoCo::Cal_implicitPiPoCo
(doCoPS1->tab_ddl,d_epsBB,doCoPS1->d2_epsBB,d_sigHH
,nbintL,poidsL,nbintH,poidsH,pa,cald_Dvirtuelle);
Element::ResRaid el;
el.res = residu;
el.raid = raideur;
return el;
};
// Calcul de la matrice masse pour l'élément
Mat_pleine * PoutSimple1::CalculMatriceMasse (Enum_calcul_masse type_calcul_masse)
{ // dimensionement de la métrique si nécessaire
if (CalDynamique == 0)
{ CalDynamique = 1;
Tableau<Enum_variable_metrique> tab(5);
tab(1) = igiB_0; tab(2) = igiB_tdt; tab(3) = igijBB_0;
tab(4) = igijBB_tdt; tab(5) = igradVmoyBB_t;
doCoPS1->met_pout.PlusInitVariables(tab) ;
// on vérifie le bon dimensionnement de la matrice
if (type_calcul_masse == MASSE_CONSISTANTE)
// dans le cas où la masse est consistante il faut la redimensionner
{ int nbddl = doCoPS1->tab_ddl.NbDdl();
(doCoPS1->matrice_masse).Initialise (nbddl,nbddl,0.);
}
};
Vecteur poidsL =(doCoPS1->segmentL).TaWi(); // poids d'intergration sur l'axe
// prise en compte de l'épaisseur et de la largeur
poidsL *= (donnee_specif.largeur * donnee_specif.epaisseur);
// appel de la routine générale
ElemMeca::Cal_Mat_masse (doCoPS1->tab_ddl,type_calcul_masse,
nbintL,(doCoPS1->segmentL).TaPhi(),nbNoeud
,poidsL);
return mat_masse;
};
// Calcul de la matrice géométrique et initiale
ElemMeca::MatGeomInit PoutSimple1::MatricesGeometrique_Et_Initiale (const ParaAlgoControle & pa)
{
bool cald_Dvirtuelle = false;
if( Calcul_implicit_PoutSimple1_met_abstraite == 0)
{ Tableau<Enum_variable_metrique> tab(15);
tab(1) = igiB_0; tab(2) = igiB_t; tab(3) = igiB_tdt; tab(4) = igijBB_0;
tab(5) = igijBB_t;tab(6) = igijBB_tdt; tab(7) = igijHH_tdt; tab(8) = id_giB_tdt;
tab(9) = id_gijBB_tdt ;tab(10) = igiH_tdt;tab(11) = id_giH_tdt;
tab(12) = id_gijHH_tdt;tab(13) = id_jacobien_tdt;tab(14) = id2_gijBB_tdt;
tab(15) = igradVBB_tdt;
doCoPS1->met_pout.PlusInitVariables(tab) ;
Calcul_implicit_PoutSimple1_met_abstraite = 1;
// on ne calcul la dérivée de la déformation virtuelle qu'une fois
// car elle est constante dans le temps et indépendante des coordonnées
cald_Dvirtuelle=true;
};
// Par simplicité
Mat_pleine & matGeom = doCoPS1->matGeom;
Mat_pleine & matInit = doCoPS1->matInit;
// mise à zéro de la matrice géométrique
matGeom.Initialise();
Vecteur poidsL =(doCoPS1->segmentL).TaWi(); // poids d'intergration sur l'axe
Vecteur poidsH =(doCoPS1->segmentH).TaWi(); // poids d'intergration dans l'épaisseur
poidsL *= donnee_specif.largeur; // en fait il n'y a pas d'intégration suivant la largeur
poidsH *= 0.5 * donnee_specif.epaisseur; // 0.5 car le domaine d'intégration dans l'épaisseur
// suivant l'élément de référence est 2
PiPoCo::Cal_matGeom_InitPiPoCo (matGeom,matInit,doCoPS1->tab_ddl, d_epsBB,
doCoPS1->d2_epsBB,d_sigHH,nbintL,poidsL,nbintH
,poidsH,pa,cald_Dvirtuelle);
return MatGeomInit(&matGeom,&matInit);
} ;
// actualisation des ddl et des grandeurs actives de t+dt vers t
void PoutSimple1::TdtversT()
{ lesPtMecaInt.TdtversT(); // contrainte
int taille = lesPtMecaInt.NbPti();
for (int ni=1;ni<= taille; ni++)
{ if (tabSaveDon(ni) != NULL) tabSaveDon(ni)->TdtversT();
if (tabSaveTP(ni) != NULL) tabSaveTP(ni)->TdtversT();
if (tabSaveDefDon(ni) != NULL) tabSaveDefDon(ni)->TdtversT();
}
ElemMeca::TdtversT_(); // appel de la procédure mère
};
// actualisation des ddl et des grandeurs actives de t vers tdt
void PoutSimple1::TversTdt()
{ lesPtMecaInt.TversTdt(); // contrainte
int taille = lesPtMecaInt.NbPti();
for (int ni=1;ni<= taille; ni++)
{ if (tabSaveDon(ni) != NULL) tabSaveDon(ni)->TversTdt();
if (tabSaveTP(ni) != NULL) tabSaveTP(ni)->TversTdt();
if (tabSaveDefDon(ni) != NULL) tabSaveDefDon(ni)->TversTdt();
}
ElemMeca::TversTdt_(); // appel de la procédure mère
};
//============= lecture écriture dans base info ==========
// cas donne le niveau de la récupération
// = 1 : on récupère tout
// = 2 : on récupère uniquement les données variables (supposées comme telles)
void PoutSimple1::Lecture_base_info
(ifstream& ent,const Tableau<Noeud *> * tabMaillageNoeud,const int cas)
{// tout d'abord appel de la lecture de la classe elem_meca
ElemMeca::Lecture_bas_inf(ent,tabMaillageNoeud,cas);
// traitement du cas particulier de la poutre
switch (cas)
{ case 1 : // ------- on récupère tout -------------------------
{ // construction du tableau de ddl des noeuds du triangle
ConstTabDdl();
// récup contraintes et déformation
lesPtMecaInt.Lecture_base_info(ent,cas);
break;
}
case 2 : // ----------- lecture uniquement de se qui varie --------------------
{ // récup contraintes et déformation
lesPtMecaInt.Lecture_base_info(ent,cas);
break;
}
default :
{ cout << "\nErreur : valeur incorrecte du type de lecture !\n";
cout << "Lecture_base_info(ifstream& ent,const Tableau<Noeud "
<< " *> * tabMaillageNoeud,const int cas) "
<< " cas= " << cas << endl;
Sortie(1);
}
}
};
// cas donne le niveau de sauvegarde
// = 1 : on sauvegarde tout
// = 2 : on sauvegarde uniquement les données variables (supposées comme telles)
void PoutSimple1::Ecriture_base_info(ofstream& sort,const int cas)
{// tout d'abord appel de l'écriture de la classe elem_meca
ElemMeca::Ecriture_bas_inf(sort,cas);
// traitement du cas particulier de la poutre
switch (cas)
{ case 1 : // ------- on sauvegarde tout -------------------------
{
// des tenseurs déformation et contrainte,
lesPtMecaInt.Ecriture_base_info(sort,cas);
break;
}
case 2 : // ----------- sauvegarde uniquement de se qui varie --------------------
{ // des tenseurs déformation et contrainte,
lesPtMecaInt.Ecriture_base_info(sort,cas);
break;
}
default :
{ cout << "\nErreur : valeur incorrecte du type d'écriture !\n";
cout << "PoutSimple1::Ecriture_base_info(ofstream& sort,const int cas)"
<< " cas= " << cas << endl;
Sortie(1);
}
}
};
// retourne les tableaux de ddl associés aux noeuds, gere par l'element
// ce tableau et specifique a l'element
const DdlElement & PoutSimple1::TableauDdl() const
{ return doCoPS1->tab_ddl; };
// liberation de la place pointee
void PoutSimple1::Libere ()
{Element::Libere (); // liberation de residu et raideur
LibereTenseur() ; // liberation des tenseur intermediaires
};
// acquisition ou modification d'une loi de comportement
void PoutSimple1::DefLoi (LoiAbstraiteGeneral * NouvelleLoi)
{ // verification du type de loi
if ((NouvelleLoi->Dimension_loi() != 1) && (NouvelleLoi->Dimension_loi() != 4))
{ cout << "\n Erreur, la loi de comportement a utiliser avec des PoutSimple1s";
cout << " doit etre de type 1D, \n ici est de type = "
<< (NouvelleLoi->Dimension_loi()) << " !!! " << endl;
Sortie(1);
}
// cas d'une loi mécanique
if (GroupeMecanique(NouvelleLoi->Id_categorie()))
{loiComp = (Loi_comp_abstraite *) NouvelleLoi;
// initialisation du stockage particulier
for (int i=1;i<=nbintL*nbintH;i++) tabSaveDon(i) = loiComp->New_et_Initialise();
// idem pour le type de déformation mécanique associé
int iDefmax = tabSaveDefDon.Taille();
for (int i=1;i<= iDefmax;i++) tabSaveDefDon(i) = def->New_et_Initialise();
// définition du type de déformation associé à la loi
loiComp->Def_type_deformation(*def);
// on active les données particulières nécessaires au fonctionnement de la loi de comp
loiComp->Activation_donnees(tab_noeud,dilatation,lesPtMecaInt);
};
// cas d'une loi thermo physique
if (GroupeThermique(NouvelleLoi->Id_categorie()))
{loiTP = (CompThermoPhysiqueAbstraite *) NouvelleLoi;
// initialisation du stockage particulier thermo physique,
int imax = tabSaveTP.Taille();
for (int i=1;i<=nbintL*nbintH;i++) tabSaveTP(i) = loiTP->New_et_Initialise();
// on active les données particulières nécessaires au fonctionnement de la loi de comp
loiTP->Activation_donnees(tab_noeud);
};
// cas d'une loi de frottement
if (GroupeFrottement(NouvelleLoi->Id_categorie()))
loiFrot = (CompFrotAbstraite *) NouvelleLoi;
};
// test si l'element est complet
int PoutSimple1::TestComplet()
{ int res = ElemMeca::TestComplet(); // test dans la fonction mere
if (( donnee_specif.epaisseur == epaisseur_defaut)
|| (donnee_specif.largeur == largeur_defaut))
{ cout << "\n l\'epaisseur ou la largeur de la PoutSimple1 ne sont pas defini \n";
res = 0; }
if ( tab_noeud(1) == NULL)
{ cout << "\n les noeuds de la PoutSimple1 ne sont pas defini \n";
res = 0; }
else
{ int testi =1;
int posi = Id_nom_ddl("X1") -1;
for (int i =1; i<= ParaGlob::Dimension(); i++)
for (int j=1;j<=2;j++)
if(!(tab_noeud(j)->Existe_ici(Enum_ddl(posi+i))))
testi = 0;
if(testi == 0)
{ cout << "\n les ddls X1,X2 etc des noeuds de la PoutSimple1 ne sont pas defini \n";
cout << " \n utilisez PoutSimple1::ConstTabDdl() pour completer " ;
res = 0; }
}
return res;
};
// ajout du tableau de ddl des noeuds de PoutSimple1
void PoutSimple1::ConstTabDdl()
{
Tableau <Ddl> ta(ParaGlob::Dimension());
int posi = Id_nom_ddl("X1") -1;
for (int i =1; i<= ParaGlob::Dimension(); i++)
{Ddl inter((Enum_ddl(i+posi)),0.,LIBRE);
ta(i) = inter;
}
// attribution des ddls aux noeuds
for (int i1=1;i1<=nbNoeud;i1++)
tab_noeud(i1)->PlusTabDdl(ta);
};
// procesure permettant de completer l'element apres
// sa creation avec les donnees du bloc transmis
// peut etre appeler plusieurs fois
Element* PoutSimple1::Complete(BlocGen & bloc,LesFonctions_nD* lesFonctionsnD)
{ // complétion avec bloc
if (bloc.Nom(1) == "largeurs")
{ donnee_specif.largeur = bloc.Val(1);
return this;
}
else if (bloc.Nom(1) == "epaisseurs")
{ donnee_specif.epaisseur = bloc.Val(1);
return this;
}
else
return ElemMeca::Complete_ElemMeca(bloc,lesFonctionsnD);
};
// affichage dans la sortie transmise, des variables duales "nom"
// dans le cas ou nom est vide, affichage de "toute" les variables
void PoutSimple1::AfficheVarDual(ofstream& sort, Tableau<string>& nom)
{// affichage de l'entête de l'element
sort << "\n******************************************************************";
sort << "\n Element PoutSimple1 (" << nbNoeud << " noeuds "
<< nbintL<<"*"<<nbintH << " points d'integration L*H) ";
sort << "\n******************************************************************";
// appel de la procedure de elem meca
if (!(Calcul_VarDualSort) && (Calcul_implicit_PoutSimple1_met_abstraite))
{ VarDualSort(sort,nom,1,1);
Calcul_VarDualSort += 1;
}
else if ((Calcul_VarDualSort) && (Calcul_implicit_PoutSimple1_met_abstraite))
VarDualSort(sort,nom,1,11);
else if (!(Calcul_VarDualSort) &&
((CalculResidu_t_PoutSimple1_met_abstraite)||
(CalculResidu_tdt_PoutSimple1_met_abstraite)))
{ VarDualSort(sort,nom,1,2);
Calcul_VarDualSort += 1;
}
else if ((Calcul_VarDualSort) &&
((CalculResidu_t_PoutSimple1_met_abstraite)||
(CalculResidu_tdt_PoutSimple1_met_abstraite)))
VarDualSort(sort,nom,1,12);
// sinon on ne fait rien
};
// Calcul des frontieres de l'element
// creation des elements frontieres et retour du tableau de ces elements
// la création n'a lieu qu'au premier appel
// ou lorsque l'on force le paramètre force a true
// dans ce dernier cas seul les frontière effacées sont recréée
Tableau <ElFrontiere*> const & PoutSimple1::Frontiere(bool force)
{ int cas = 6; // on veut des lignes et des points
return Frontiere_elemeca(cas,force);
// { // le calcul et la création ne sont effectués qu'au premier appel
// // ou lorsque l'on veut forcer une recréation
// if (((ind_front_lin == 0) && (ind_front_surf == 0) && (ind_front_point == 0))
// || force )
//// if ((ind_front_point == 0) || force || (ind_front_point == 2))
// { // dimensionnement des tableaux intermediaires
// Tableau <Noeud *> tab(1); // les noeuds des points frontieres
// DdlElement ddelem(1); // les ddlelements des points frontieres
// int tail;
// if ((ParaGlob::Dimension() == 1) && (ind_front_lin > 0))
// tail = 3; // deux points et une ligne
// else if (ParaGlob::Dimension() == 1) // cas sans ligne
// tail = 2; // 2 points
// else // cas d'une dimension 2 et 3
// { tail = 3; // deux points et une ligne
// ind_front_lin = 1;
// }
// tabb.Change_taille(tail); // le tableau total de frontières
//
// // premier point
// tab(1) = tab_noeud(1);
// ddelem.Change_un_ddlNoeudElement(1,doCoPS1->tab_ddl(1));
// // ddelem(1) = doCoPS1->tab_ddl(1);
// if (tabb(1+posi_tab_front_point) == NULL)
// tabb(1+posi_tab_front_point) = new FrontPointF (tab,ddelem);
// // second point
// tab(1) = tab_noeud(2);
// ddelem.Change_un_ddlNoeudElement(1,doCoPS1->tab_ddl(2));
// // ddelem(1) = doCoPS1->tab_ddl(2);
// if (tabb(2+posi_tab_front_point) == NULL)
// tabb(2+posi_tab_front_point) = new FrontPointF (tab,ddelem);
// // 3 ieme cote eventuelle
// if (ind_front_lin > 0)
// // cas où il y a une ligne, c'est forcément le premier élément
// if (tabb(1) == NULL)
// tabb(1) = new FrontSegLine(tab_noeud,doCoPS1->tab_ddl);
//
// // mise à jour des indicateurs
// ind_front_point = 1;
// }
//
// return tabb;
};
//// ramène la frontière point
// // éventuellement création des frontieres points de l'element et stockage dans l'element
// // si c'est la première fois sinon il y a seulement retour de l'elements
// // a moins que le paramètre force est mis a true
// // dans ce dernier cas la frontière effacéee est recréée
// // num indique le numéro du point à créer (numérotation EF)
// ElFrontiere* const PoutSimple1::Frontiere_points(int,bool )
// { cout << "\n fonction non implante !! "
// << "\n PoutSimple1::Frontiere_points(..";
// Sortie(1);
// return NULL;
// }
//
//// ramène la frontière linéique
//// éventuellement création des frontieres linéique de l'element et stockage dans l'element
//// si c'est la première fois et en 3D sinon il y a seulement retour de l'elements
//// a moins que le paramètre force est mis a true
//// dans ce dernier cas la frontière effacéee est recréée
//// num indique le numéro de l'arête à créer (numérotation EF)
//ElFrontiere* const PoutSimple1::Frontiere_lineique(int num,bool )
// { // le calcul et la création ne sont effectués qu'au premier appel
// // ou lorsque l'on veut forcer une recréation
// #ifdef MISE_AU_POINT
// if (num != 1)
// { cout << "\n *** erreur, pour les poutres simples il n'y a qu'une frontière ligne ! "
// << "\n Frontiere_lineique(int num,bool force)";
// Sortie(1);
// }
// #endif
//
// // on regarde si les frontières linéiques existent sinon on les crée
// if (ind_front_lin == 1)
// return (ElFrontiere*)tabb(1);
// else if ( ind_front_lin == 2)
// // cas où certaines frontières existent
// if (tabb(1) != NULL)
// return (ElFrontiere*)tabb(1);
// // dans tous les autres cas on construit la frontière ligne
// // on commence par dimensionner le tableau de frontière
// if (ind_front_point > 0)
// // cas où il y a des frontières points (mais pas ligne)
// // on décale le tableau
// { tabb.Change_taille(3);
// tabb(3) = tabb(2);
// tabb(2) = tabb(1);
// posi_tab_front_point = 1;
// }
// // on définit la ligne
// tabb(1) = new FrontSegLine(tab_noeud,doCoPS1->tab_ddl);
// ind_front_lin = 1; // mise à jour de l'indicateur
// // et normalement posi_tab_front_ligne = 0, car jamais changé
// return (ElFrontiere*)tabb(num);
// };
//
//
//// ramène la frontière surfacique
//// éventuellement création des frontieres surfacique de l'element et stockage dans l'element
//// si c'est la première fois sinon il y a seulement retour de l'elements
//// a moins que le paramètre force est mis a true
//// dans ce dernier cas la frontière effacéee est recréée
//// num indique le numéro de la surface à créer (numérotation EF)
//// ici normalement la fonction ne doit pas être appelée
//ElFrontiere* const PoutSimple1::Frontiere_surfacique(int ,bool )
// { cout << "\n *** erreur, pour les poutres simples il n'y a pas de frontière surface ! "
// << "\n Frontiere_surfacique(int ,bool force = false)";
// Sortie(1);
// return NULL;
// };
//