Herezh_dev/comportement/Hypo_elastique/Hypo_hooke2D_C.h
2023-05-03 17:23:49 +02:00

298 lines
15 KiB
C++

// FICHIER : Hypo_hooke2D_C.h
// CLASSE : Hypo_hooke2D_C
// This file is part of the Herezh++ application.
//
// The finite element software Herezh++ is dedicated to the field
// of mechanics for large transformations of solid structures.
// It is developed by Gérard Rio (APP: IDDN.FR.010.0106078.000.R.P.2006.035.20600)
// INSTITUT DE RECHERCHE DUPUY DE LÔME (IRDL) <https://www.irdl.fr/>.
//
// Herezh++ is distributed under GPL 3 license ou ultérieure.
//
// Copyright (C) 1997-2022 Université Bretagne Sud (France)
// AUTHOR : Gérard Rio
// E-MAIL : gerardrio56@free.fr
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License,
// or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// For more information, please consult: <https://herezh.irdl.fr/>.
/************************************************************************
* DATE: 30/12/2006 *
* $ *
* AUTEUR: G RIO (mailto:gerardrio56@free.fr) *
* $ *
* PROJET: Herezh++ *
* $ *
************************************************************************
* BUT: La classe Hypo_hooke2D_C definit une loi 2D hypo_élastique*
* qui sous forme intégrée peut-être équivalente à hooke. *
* viscosité non linéaire éventuelle. *
* On a donc : *
* S_point = mu D_b *
* I_point_sigma = K I_D_b *
* $ *
* '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' * *
* VERIFICATION: *
* *
* ! date ! auteur ! but ! *
* ------------------------------------------------------------ *
* ! ! ! ! *
* $ *
* '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' *
* MODIFICATIONS: *
* ! date ! auteur ! but ! *
* ------------------------------------------------------------ *
* $ *
************************************************************************/
#ifndef HYPO_HOOKE_2D_C_H
#define HYPO_HOOKE_2D_C_H
#include "Loi_comp_abstraite.h"
/// @addtogroup Les_lois_hypoelastiques
/// @{
///
class Hypo_hooke2D_C : public Loi_comp_abstraite
{
public :
// CONSTRUCTEURS :
// Constructeur par defaut
Hypo_hooke2D_C ();
// Constructeur de copie
Hypo_hooke2D_C (const Hypo_hooke2D_C& loi) ;
// DESTRUCTEUR :
~Hypo_hooke2D_C ();
// initialise les donnees particulieres a l'elements
// de matiere traite ( c-a-dire au pt calcule)
class SaveResul_Hypo_hooke2D_C: public SaveResul
{ public :
SaveResul_Hypo_hooke2D_C(); // constructeur par défaut (a ne pas utiliser)
// le constructeur courant
SaveResul_Hypo_hooke2D_C(SaveResul* l_des_SaveResul);
// constructeur de copie
SaveResul_Hypo_hooke2D_C(const SaveResul_Hypo_hooke2D_C& sav );
// destructeur
~SaveResul_Hypo_hooke2D_C();
// définition d'une nouvelle instance identique
// appelle du constructeur via new
SaveResul * Nevez_SaveResul() const {return (new SaveResul_Hypo_hooke2D_C(*this));};
// affectation
virtual SaveResul & operator = ( const SaveResul & a)
{SaveResul_Hypo_hooke2D_C& sav = *((SaveResul_Hypo_hooke2D_C*) &a);
Kc=sav.Kc;Kc_t=sav.Kc_t;mu=sav.mu;mu_t=sav.mu_t;
eps33=sav.eps33;eps33_t=sav.eps33_t;
eps_cumulBB = sav.eps_cumulBB;eps_cumulBB_t=sav.eps_cumulBB_t;
return *this;
};
//============= lecture écriture dans base info ==========
// cas donne le niveau de la récupération
// = 1 : on récupère tout
// = 2 : on récupère uniquement les données variables (supposées comme telles)
void Lecture_base_info (ifstream& ent,const int cas);
// cas donne le niveau de sauvegarde
// = 1 : on sauvegarde tout
// = 2 : on sauvegarde uniquement les données variables (supposées comme telles)
void Ecriture_base_info(ofstream& sort,const int cas);
// mise à jour des informations transitoires en définitif s'il y a convergence
// par exemple (pour la plasticité par exemple)
void TdtversT()
{Kc_t = Kc; mu_t=mu;eps33_t=eps33;eps_cumulBB_t=eps_cumulBB;} ;
void TversTdt()
{Kc = Kc_t; mu = mu_t; eps33=eps33_t;eps_cumulBB=eps_cumulBB_t;} ;
// affichage à l'écran des infos
void Affiche() const;
//changement de base de toutes les grandeurs internes tensorielles stockées
// beta(i,j) represente les coordonnees de la nouvelle base naturelle gpB dans l'ancienne gB
// gpB(i) = beta(i,j) * gB(j), i indice de ligne, j indice de colonne
// ici il n'y a pas de données tensorielles donc rien n'a faire
// gpH(i) = gamma(i,j) * gH(j)
virtual void ChBase_des_grandeurs(const Mat_pleine& beta,const Mat_pleine& gamma);
// procedure permettant de completer éventuellement les données particulières
// de la loi stockées
// au niveau du point d'intégration par exemple: exemple: un repère d'anisotropie
// completer est appelé apres sa creation avec les donnees du bloc transmis
// peut etre appeler plusieurs fois
SaveResul* Complete_SaveResul(const BlocGen & bloc, const Tableau <Coordonnee>& tab_coor
,const Loi_comp_abstraite* loi) {return NULL;};
// ---- récupération d'information: spécifique à certaine classe dérivée
double Deformation_plastique();
// données protégées
double Kc,Kc_t; // les paramètres matériaux réellement utilisés
double mu,mu_t;
double eps33,eps33_t; // déformation d'épaisseur
Tenseur2BB eps_cumulBB,eps_cumulBB_t; // déformation cumulée associée à la loi
};
// def d'une instance de données spécifiques, et initialisation
SaveResul * New_et_Initialise();
// Lecture des donnees de la classe sur fichier
void LectureDonneesParticulieres (UtilLecture * ,LesCourbes1D& lesCourbes1D,LesFonctions_nD& lesFonctionsnD);
// affichage de la loi
void Affiche() const ;
// test si la loi est complete
// = 1 tout est ok, =0 loi incomplete
int TestComplet();
//----- lecture écriture de restart -----
// cas donne le niveau de la récupération
// = 1 : on récupère tout
// = 2 : on récupère uniquement les données variables (supposées comme telles)
void Lecture_base_info_loi(ifstream& ent,const int cas,LesReferences& lesRef,LesCourbes1D& lesCourbes1D
,LesFonctions_nD& lesFonctionsnD);
// cas donne le niveau de sauvegarde
// = 1 : on sauvegarde tout
// = 2 : on sauvegarde uniquement les données variables (supposées comme telles)
void Ecriture_base_info_loi(ofstream& sort,const int cas);
// récupération des grandeurs particulière (hors ddl )
// correspondant à liTQ
// absolue: indique si oui ou non on sort les tenseurs dans la base absolue ou une base particulière
void Grandeur_particuliere
(bool absolue,List_io<TypeQuelconque>& ,Loi_comp_abstraite::SaveResul * ,list<int>& decal) const;
// récupération de la liste de tous les grandeurs particulières
// ces grandeurs sont ajoutées à la liste passées en paramètres
void ListeGrandeurs_particulieres(List_io<TypeQuelconque>& ) const;
// calcul d'un module d'young équivalent à la loi, ceci pour un
// chargement nul
double Module_young_equivalent(Enum_dure temps,const Deformation & ,SaveResul * saveResul );
// récupération d'un module de compressibilité équivalent à la loi pour un chargement nul
// il s'agit ici de la relation -pression = sigma_trace/3. = module de compressibilité * I_eps
double Module_compressibilite_equivalent(Enum_dure temps,const Deformation & ,SaveResul * saveDon);
// récupération de la variation relative d'épaisseur calculée: h/h0
// cette variation n'est utile que pour des lois en contraintes planes
// - pour les lois 3D : retour d'un nombre très grand, indiquant que cette fonction est invalide
// - pour les lois 2D def planes: retour de 0
// les infos nécessaires à la récupération , sont stockées dans saveResul
// qui est le conteneur spécifique au point où a été calculé la loi
virtual double HsurH0(SaveResul * saveResul) const;
// création d'une loi à l'identique et ramène un pointeur sur la loi créée
Loi_comp_abstraite* Nouvelle_loi_identique() const { return (new Hypo_hooke2D_C(*this)); };
// affichage et definition interactive des commandes particulières à chaques lois
void Info_commande_LoisDeComp(UtilLecture& lec);
// calcul de grandeurs de travail aux points d'intégration via la def et autres
// ici permet de récupérer la compressibilité
// fonction surchargée dans les classes dérivée si besoin est
virtual void CalculGrandeurTravail
(const PtIntegMecaInterne& ptintmeca
,const Deformation & def,Enum_dure temps,const ThermoDonnee& dTP
,const Met_abstraite::Impli* ex_impli
,const Met_abstraite::Expli_t_tdt* ex_expli_tdt
,const Met_abstraite::Umat_cont* ex_umat
,const List_io<Ddl_etendu>* exclure_dd_etend
,const List_io<const TypeQuelconque *>* exclure_Q
)
{if (compress_thermophysique) Kc = 3./dTP.Compressibilite(); };
// ---------------------------- methode propre a une loi en contraintes planes ---------------------
// récupération de la dernière déformation d'épaisseur calculée: cette déformaion n'est utile que pour des lois en contraintes planes ou doublement planes
// - pour les lois 3D : retour d'un nombre très grand, indiquant que cette fonction est invalide
// - pour les lois 2D def planes: retour de 0
// les infos nécessaires à la récupération de la def, sont stockées dans saveResul
// qui est le conteneur spécifique au point où a été calculé la loi
virtual double Eps33BH(SaveResul * saveResul) const ;
// indique si la loi est en contraintes planes en s'appuyant sur un comportement 3D
virtual bool Contraintes_planes_de_3D() const {return true;};
// calcul de la vitesse de deformation eps33_point
double Deps33BH(TenseurBB & epsBB_,TenseurBB & DepsBB_,TenseurHH & gijHH_);
protected :
// donnée de la loi
double mu; // coef de proportionalité entre S_point et D_barre
Courbe1D* mu_temperature; // courbe éventuelle d'évolution de mu en fonction de la température
Courbe1D* mu_IIeps; // courbe éventuelle d'évolution de mu en fonction du deuxième invariant d'epsilon
Fonction_nD* mu_nD; // fonction nD éventuelle pour mu
double Kc; // coefficient de compressibilité instantané
Courbe1D* Kc_temperature; // courbe éventuelle d'évolution de Kc en fonction de la température
Courbe1D* Kc_IIeps; // courbe éventuelle d'évolution de Kc en fonction du deuxième invariant d'epsilon
Fonction_nD * Kc_nD; // fonction nD éventuelle pour Kc
bool compress_thermophysique; // indique si oui ou non la compressibilité est calculée par une loi
// thermophysique et donc
// récupéré par la fonction "CalculGrandeurTravail"
int type_derive; // type de dérivée objective utilisée pour sigma
// -1: dérivée de Jauman (par défaut)
// 0 : dérivée deux fois covariante
// 1 : dérivée deux fois contravariante
short int cas_calcul; // indique le choix entre différents types de calcul possible
// = 0 : calcul normal
// = 1 : calcul seulement déviatorique (la partie sphérique est mise à zéro)
// = 2 : calcul seulement sphérique (la partie déviatorique est mise à zéro)
// codage des METHODES VIRTUELLES protegees:
// calcul des contraintes a t+dt
// calcul des contraintes
void Calcul_SigmaHH (TenseurHH & sigHH_t,TenseurBB& DepsBB,DdlElement & tab_ddl
,TenseurBB & gijBB_t,TenseurHH & gijHH_t,BaseB& giB,BaseH& gi_H, TenseurBB & epsBB_
,TenseurBB & delta_epsBB_
,TenseurBB & gijBB_,TenseurHH & gijHH_,Tableau <TenseurBB *>& d_gijBB_
,double& jacobien_0,double& jacobien,TenseurHH & sigHH
,EnergieMeca & energ,const EnergieMeca & energ_t,double& module_compressibilite,double& module_cisaillement
,const Met_abstraite::Expli_t_tdt& ex);
// calcul des contraintes et de ses variations a t+dt
void Calcul_DsigmaHH_tdt (TenseurHH & sigHH_t,TenseurBB& DepsBB,DdlElement & tab_ddl
,BaseB& giB_t,TenseurBB & gijBB_t,TenseurHH & gijHH_t
,BaseB& giB_tdt,Tableau <BaseB> & d_giB_tdt,BaseH& giH_tdt,Tableau <BaseH> & d_giH_tdt
,TenseurBB & epsBB_tdt,Tableau <TenseurBB *>& d_epsBB
,TenseurBB & delta_epsBB,TenseurBB & gijBB_tdt,TenseurHH & gijHH_tdt
,Tableau <TenseurBB *>& d_gijBB_tdt
,Tableau <TenseurHH *>& d_gijHH_tdt,double& jacobien_0,double& jacobien
,Vecteur& d_jacobien_tdt,TenseurHH& sigHH,Tableau <TenseurHH *>& d_sigHH
,EnergieMeca & energ,const EnergieMeca & energ_t,double& module_compressibilite,double& module_cisaillement
,const Met_abstraite::Impli& ex);
};
/// @} // end of group
#endif