257 lines
13 KiB
C++
257 lines
13 KiB
C++
|
|
|
|
// This file is part of the Herezh++ application.
|
|
//
|
|
// The finite element software Herezh++ is dedicated to the field
|
|
// of mechanics for large transformations of solid structures.
|
|
// It is developed by Gérard Rio (APP: IDDN.FR.010.0106078.000.R.P.2006.035.20600)
|
|
// INSTITUT DE RECHERCHE DUPUY DE LÔME (IRDL) <https://www.irdl.fr/>.
|
|
//
|
|
// Herezh++ is distributed under GPL 3 license ou ultérieure.
|
|
//
|
|
// Copyright (C) 1997-2022 Université Bretagne Sud (France)
|
|
// AUTHOR : Gérard Rio
|
|
// E-MAIL : gerardrio56@free.fr
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License,
|
|
// or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty
|
|
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
// See the GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
//
|
|
// For more information, please consult: <https://herezh.irdl.fr/>.
|
|
|
|
/************************************************************************
|
|
* DATE: 30/5/2005 *
|
|
* $ *
|
|
* AUTEUR: G RIO (mailto:gerardrio56@free.fr) *
|
|
* $ *
|
|
* PROJET: Herezh++ *
|
|
* $ *
|
|
************************************************************************
|
|
* BUT: La classe MooneyRivlin3D permet de calculer la contrainte *
|
|
* et ses derivees pour une loi isotrope hyper élastique *
|
|
* de type Mooney Rivlin en 3D. Ici on considère *
|
|
* la variation de volume. *
|
|
* S contrainte de cauchy et e def d'almansi *
|
|
* S = 2*C10*(1/(1-2*e) - racine(1-2*e)) + 2*C01*(1/racine(1-2*e) *
|
|
* - (1-2*e)) *
|
|
* Il s'agit d'une classe derivee de la classe Loi_comp_abstraite. *
|
|
* $ *
|
|
* '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' * *
|
|
* VERIFICATION: *
|
|
* *
|
|
* ! date ! auteur ! but ! *
|
|
* ------------------------------------------------------------ *
|
|
* ! ! ! ! *
|
|
* $ *
|
|
* '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' *
|
|
* MODIFICATIONS: *
|
|
* ! date ! auteur ! but ! *
|
|
* ------------------------------------------------------------ *
|
|
* $ *
|
|
************************************************************************/
|
|
#ifndef MOONEY_RIVLIN_3D_H
|
|
#define MOONEY_RIVLIN_3D_H
|
|
|
|
|
|
|
|
|
|
#include "Loi_comp_abstraite.h"
|
|
#include "Courbe1D.h"
|
|
#include "MathUtil.h"
|
|
#include "Hyper_W_gene_3D.h"
|
|
|
|
|
|
/// @addtogroup Les_lois_hyperelastiques
|
|
/// @{
|
|
///
|
|
|
|
|
|
class MooneyRivlin3D : public Hyper_W_gene_3D
|
|
{
|
|
|
|
|
|
public :
|
|
|
|
|
|
// CONSTRUCTEURS :
|
|
|
|
// Constructeur par defaut
|
|
MooneyRivlin3D ();
|
|
|
|
|
|
// Constructeur de copie
|
|
MooneyRivlin3D (const MooneyRivlin3D& loi) ;
|
|
|
|
// DESTRUCTEUR :
|
|
|
|
~MooneyRivlin3D ();
|
|
|
|
// initialise les donnees particulieres a l'elements
|
|
// de matiere traite ( c-a-dire au pt calcule)
|
|
// Il y a creation d'une instance de SaveResul particuliere
|
|
// a la loi concernee
|
|
// la SaveResul classe est remplie par les instances heritantes
|
|
// le pointeur de SaveResul est sauvegarde au niveau de l'element
|
|
// c'a-d que les info particulieres au point considere sont stocke
|
|
// au niveau de l'element et non de la loi.
|
|
virtual SaveResul * New_et_Initialise()
|
|
{ int avec_para = 0; // init par défaut
|
|
if (sortie_post)
|
|
avec_para = 3;
|
|
SaveResulHyper_W_gene_3D * pt = new SaveResulHyper_W_gene_3D(avec_para);
|
|
// insertion éventuelle de conteneurs de grandeurs quelconque
|
|
this->Insertion_conteneur_dans_save_result(pt);
|
|
return pt;
|
|
};
|
|
|
|
// Lecture des donnees de la classe sur fichier
|
|
void LectureDonneesParticulieres (UtilLecture * ,LesCourbes1D& lesCourbes1D
|
|
,LesFonctions_nD& lesFonctionsnD);
|
|
// affichage de la loi
|
|
void Affiche() const ;
|
|
// test si la loi est complete
|
|
// = 1 tout est ok, =0 loi incomplete
|
|
int TestComplet();
|
|
|
|
//----- lecture écriture de restart -----
|
|
// cas donne le niveau de la récupération
|
|
// = 1 : on récupère tout
|
|
// = 2 : on récupère uniquement les données variables (supposées comme telles)
|
|
void Lecture_base_info_loi(ifstream& ent,const int cas,LesReferences& lesRef,LesCourbes1D& lesCourbes1D
|
|
,LesFonctions_nD& lesFonctionsnD);
|
|
// cas donne le niveau de sauvegarde
|
|
// = 1 : on sauvegarde tout
|
|
// = 2 : on sauvegarde uniquement les données variables (supposées comme telles)
|
|
void Ecriture_base_info_loi(ofstream& sort,const int cas);
|
|
|
|
// calcul d'un module d'young équivalent à la loi,
|
|
// c'est sans doute complètement débile mais c'est pour pouvoir avancer !!
|
|
double Module_young_equivalent(Enum_dure temps,const Deformation & ,SaveResul * ) {return 6.* C10;};
|
|
|
|
// récupération de la variation relative d'épaisseur calculée: h/h0
|
|
// cette variation n'est utile que pour des lois en contraintes planes
|
|
// - pour les lois 3D : retour d'un nombre très grand, indiquant que cette fonction est invalide
|
|
// - pour les lois 2D def planes: retour de 0
|
|
// les infos nécessaires à la récupération , sont stockées dans saveResul
|
|
// qui est le conteneur spécifique au point où a été calculé la loi
|
|
virtual double HsurH0(SaveResul * saveResul) const {return ConstMath::tresgrand;};
|
|
|
|
// création d'une loi à l'identique et ramène un pointeur sur la loi créée
|
|
Loi_comp_abstraite* Nouvelle_loi_identique() const { return (new MooneyRivlin3D(*this)); };
|
|
|
|
// affichage et definition interactive des commandes particulières à chaques lois
|
|
void Info_commande_LoisDeComp(UtilLecture& lec);
|
|
|
|
protected :
|
|
// donnée de la loi
|
|
double C10,C01,K; // 3 coeffs lues
|
|
double K_use,C10_use,C01_use; // les 3 coeffs utilisés dans les calculs
|
|
|
|
Courbe1D* C10_temperature; // courbe éventuelle d'évolution de C10 en fonction de la température
|
|
Courbe1D* C01_temperature; // courbe éventuelle d'évolution de C01 en fonction de la température
|
|
Courbe1D* K_temperature; // courbe éventuelle d'évolution de K en fonction de la température
|
|
int type_pot_vol; // indique le type de potentiel volumique, par défaut 2
|
|
bool avec_courbure; // indique s'il y a un potentiel de courbure ou non
|
|
double a_courbure; // para a utilisé que dans le cas avec courbure
|
|
double r_courbure; // para r utilisé que dans le cas avec courbure
|
|
Courbe1D* a_temperature; // courbe éventuelle d'évolution de a en fonction de la température
|
|
Courbe1D* r_temperature; // courbe éventuelle d'évolution de r en fonction de la température
|
|
|
|
// cas d'une dépendance à une fonction nD, les fonctions sont multiplicatives par rapport aux valeurs
|
|
// définies par les données fixes où celles dépendantes directement de la température via une courbe 1D
|
|
// -- bien voir que dans ce cas on peut obtenir n'importe quoi, c'est de la responsabilité
|
|
// de l'utilisateur de savoir se qu'il fait
|
|
Fonction_nD * K_nD, * C01_nD, * C10_nD;
|
|
|
|
double W_d,W_v; // le potentiel: partie déviatorique, partie sphérique
|
|
Vecteur W_r; // dérivées premières du potentiel par rapport aux J_r
|
|
double W_d_J1,W_d_J2; // dérivées premières du potentiel déviatoire par rapport aux J_1 et J_2
|
|
double W_v_J3,W_v_J3J3; // dérivées premières et seconde du potentiel volumique / J3
|
|
Tableau2 <double> W_rs; // dérivées secondes du potentiel par rapport aux J_r
|
|
// cas éventuel de potentiel additionel de raidissement: variables intermédiaires de passage
|
|
double W_c,W_c_J1,W_c_J3,W_c_J1_2,W_c_J3_2,W_c_J1_J3; // potentiel et dérivées 1 et 2
|
|
|
|
|
|
// codage des METHODES VIRTUELLES protegees:
|
|
// calcul des contraintes a t+dt
|
|
// calcul des contraintes
|
|
void Calcul_SigmaHH (TenseurHH & sigHH_t,TenseurBB& DepsBB,DdlElement & tab_ddl
|
|
,TenseurBB & gijBB_t,TenseurHH & gijHH_t,BaseB& giB,BaseH& gi_H, TenseurBB & epsBB_
|
|
,TenseurBB & delta_epsBB_
|
|
,TenseurBB & gijBB_,TenseurHH & gijHH_,Tableau <TenseurBB *>& d_gijBB_
|
|
,double& jacobien_0,double& jacobien,TenseurHH & sigHH
|
|
,EnergieMeca & energ,const EnergieMeca & energ_t,double& module_compressibilite,double& module_cisaillement
|
|
,const Met_abstraite::Expli_t_tdt& ex);
|
|
|
|
// calcul des contraintes et de ses variations a t+dt
|
|
void Calcul_DsigmaHH_tdt (TenseurHH & sigHH_t,TenseurBB& DepsBB,DdlElement & tab_ddl
|
|
,BaseB& giB_t,TenseurBB & gijBB_t,TenseurHH & gijHH_t
|
|
,BaseB& giB_tdt,Tableau <BaseB> & d_giB_tdt,BaseH& giH_tdt,Tableau <BaseH> & d_giH_tdt
|
|
,TenseurBB & epsBB_tdt,Tableau <TenseurBB *>& d_epsBB
|
|
,TenseurBB & delta_epsBB,TenseurBB & gijBB_tdt,TenseurHH & gijHH_tdt
|
|
,Tableau <TenseurBB *>& d_gijBB_tdt
|
|
,Tableau <TenseurHH *>& d_gijHH_tdt,double& jacobien_0,double& jacobien
|
|
,Vecteur& d_jacobien_tdt,TenseurHH& sigHH,Tableau <TenseurHH *>& d_sigHH
|
|
,EnergieMeca & energ,const EnergieMeca & energ_t,double& module_compressibilite,double& module_cisaillement
|
|
,const Met_abstraite::Impli& ex);
|
|
|
|
// calcul des contraintes et ses variations par rapport aux déformations a t+dt
|
|
// en_base_orthonormee: le tenseur de contrainte en entrée est en orthonormee
|
|
// le tenseur de déformation et son incrémentsont également en orthonormees
|
|
// si = false: les bases transmises sont utilisées
|
|
// ex: contient les éléments de métrique relativement au paramétrage matériel = X_(0)^a
|
|
void Calcul_dsigma_deps (bool en_base_orthonormee, TenseurHH & sigHH_t,TenseurBB& DepsBB
|
|
,TenseurBB & epsBB_tdt,TenseurBB & delta_epsBB,double& jacobien_0,double& jacobien
|
|
,TenseurHH& sigHH,TenseurHHHH& d_sigma_deps
|
|
,EnergieMeca & energ,const EnergieMeca & energ_t,double& module_compressibilite,double& module_cisaillement
|
|
,const Met_abstraite::Umat_cont& ex) ; //= 0;
|
|
|
|
|
|
// fonction surchargée dans les classes dérivée si besoin est
|
|
virtual void CalculGrandeurTravail
|
|
(const PtIntegMecaInterne& ,const Deformation &
|
|
,Enum_dure,const ThermoDonnee&
|
|
,const Met_abstraite::Impli* ex_impli
|
|
,const Met_abstraite::Expli_t_tdt* ex_expli_tdt
|
|
,const Met_abstraite::Umat_cont* ex_umat
|
|
,const List_io<Ddl_etendu>* exclure_dd_etend
|
|
,const List_io<const TypeQuelconque *>* exclure_Q
|
|
) {};
|
|
|
|
private:
|
|
// calcul du potentiel et de ses dérivées premières / aux invariants J_r
|
|
void Potentiel_et_var(double & module_compressibilite);
|
|
// calcul du potentiel et de ses dérivées premières et secondes / aux invariants J_r
|
|
void Potentiel_et_var2(double & module_compressibilite);
|
|
// calcul de la dérivée numérique de la contrainte
|
|
void Cal_dsigma_deps_num (const TenseurBB & gijBB_0,const TenseurHH & gijHH_0
|
|
,const TenseurBB & gijBB_tdt,const TenseurHH & gijHH_tdt
|
|
,const double& jacobien_0,const double& jacobien
|
|
,Tenseur3HHHH& dSigdepsHHHH);
|
|
// calcul de la contrainte avec le minimum de variable de passage, utilisé pour le numérique
|
|
void Cal_sigma_pour_num(const TenseurBB & gijBB_0,const TenseurHH & gijHH_0
|
|
,const TenseurBB & gijBB_tdt,const TenseurHH & gijHH_tdt
|
|
,const double& jacobien_0,const double& jacobien,TenseurHH & sigHH_);
|
|
// idem avec la variation
|
|
void Cal_sigmaEtDer_pour_num(const TenseurBB & gijBB_0,const TenseurHH & gijHH_0
|
|
,const TenseurBB & gijBB_tdt,const TenseurHH & gijHH_tdt
|
|
,const double& jacobien_0,const double& jacobien
|
|
,TenseurHH & sigHH_,Tenseur3HHHH& dSigdepsHHHH);
|
|
|
|
};
|
|
/// @} // end of group
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|