// FICHIER : Loi_newton1D.cp
// CLASSE : Loi_newton1D
// This file is part of the Herezh++ application.
//
// The finite element software Herezh++ is dedicated to the field
// of mechanics for large transformations of solid structures.
// It is developed by Gérard Rio (APP: IDDN.FR.010.0106078.000.R.P.2006.035.20600)
// INSTITUT DE RECHERCHE DUPUY DE LÔME (IRDL) .
//
// Herezh++ is distributed under GPL 3 license ou ultérieure.
//
// Copyright (C) 1997-2021 Université Bretagne Sud (France)
// AUTHOR : Gérard Rio
// E-MAIL : gerardrio56@free.fr
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License,
// or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// For more information, please consult: .
//#include "Debug.h"
# include
using namespace std; //introduces namespace std
#include
#include
#include "Sortie.h"
#include "TypeConsTens.h"
#include "ParaGlob.h"
#include "ConstMath.h"
#include "CharUtil.h"
#include "Loi_newton1D.h"
Loi_newton1D::Loi_newton1D () : // Constructeur par defaut
Loi_comp_abstraite(NEWTON1D,CAT_THERMO_MECANIQUE,1),mu(-ConstMath::trespetit),xn(1.),simple(true)
,mu_temperature(NULL),xn_temperature(NULL),Deps0(0.01)
{ };
// Constructeur de copie
Loi_newton1D::Loi_newton1D (const Loi_newton1D& loi) :
Loi_comp_abstraite(loi),mu(loi.mu),xn(loi.xn),simple(loi.simple)
,mu_temperature(loi.mu_temperature),xn_temperature(loi.xn_temperature)
,Deps0(loi.Deps0)
{// on regarde s'il s'agit d'une courbe locale ou d'une courbe globale
if (mu_temperature != NULL)
if (mu_temperature->NomCourbe() == "_")
mu_temperature = Courbe1D::New_Courbe1D(*(loi.mu_temperature));
if (xn_temperature != NULL)
if (xn_temperature->NomCourbe() == "_")
xn_temperature = Courbe1D::New_Courbe1D(*(loi.xn_temperature));;
};
Loi_newton1D::~Loi_newton1D ()
// Destructeur
{ if (mu_temperature != NULL)
if (mu_temperature->NomCourbe() == "_") delete mu_temperature;
if (xn_temperature != NULL)
if (xn_temperature->NomCourbe() == "_") delete xn_temperature;
};
// Lecture des donnees de la classe sur fichier
void Loi_newton1D::LectureDonneesParticulieres (UtilLecture * entreePrinc,LesCourbes1D& lesCourbes1D
,LesFonctions_nD& lesFonctionsnD)
{ string nom;
// lecture de la viscosité
*(entreePrinc->entree) >> nom;
if (nom != "mu=")
{ cout << "\n erreur en lecture de la viscosite, on aurait du lire le mot mu=";
entreePrinc->MessageBuffer("**erreur1 Loi_newton1D::LectureDonneesParticulieres (...**");
throw (UtilLecture::ErrNouvelleDonnee(-1));
Sortie(1);
};
// on regarde si la viscosité est thermo dépendante
if(strstr(entreePrinc->tablcar,"mu_thermo_dependant_")!=0)
{ thermo_dependant=true;
*(entreePrinc->entree) >> nom;
if (nom != "mu_thermo_dependant_")
{ cout << "\n erreur en lecture de la thermodependance de mu, on aurait du lire le mot cle mu_thermo_dependant_"
<< " suivi du nom d'une courbe de charge ou de la courbe elle meme ";
entreePrinc->MessageBuffer("**erreur2 Loi_newton1D::LectureDonneesParticulieres (...**");
throw (UtilLecture::ErrNouvelleDonnee(-1));
Sortie(1);
};
// lecture de la loi d'évolution en fonction de la température
*(entreePrinc->entree) >> nom;
// on regarde si la courbe existe, si oui on récupère la référence
if (lesCourbes1D.Existe(nom))
{ mu_temperature = lesCourbes1D.Trouve(nom);
}
else
{ // sinon il faut la lire maintenant
string non_courbe("_");
mu_temperature = Courbe1D::New_Courbe1D(non_courbe,Id_Nom_Courbe1D (nom.c_str()));
// lecture de la courbe
mu_temperature->LectDonnParticulieres_courbes (non_courbe,entreePrinc);
}
// prepa du flot de lecture
if(strstr(entreePrinc->tablcar,"fin_coeff_NEWTON1D")==0) entreePrinc->NouvelleDonnee();
}
else
{ // lecture de mu
*(entreePrinc->entree) >> mu ;
};
// on regarde s'il y a un coefficient non linéaire
simple = true; // par défaut
if (strstr(entreePrinc->tablcar,"xn")!=NULL)
{ *(entreePrinc->entree) >> nom ;
simple = false;
#ifdef MISE_AU_POINT
if (nom != "xn=")
{ cout << "\n erreur en lecture de la loi de Newton, on attendait xn= suivi d'un nombre "
<< " ou du mot cle xn_thermo_dependant_ et ensuite une courbe ";
entreePrinc->MessageBuffer("**erreur3 Loi_newton1D::LectureDonneesParticulieres (...**");
throw (UtilLecture::ErrNouvelleDonnee(-1));
Sortie(1);
};
#endif
// on regarde si le coefficient non linéaire est thermo dépendant
if(strstr(entreePrinc->tablcar,"xn_thermo_dependant_")!=0)
{ thermo_dependant=true; *(entreePrinc->entree) >> nom;
if (nom != "xn_thermo_dependant_")
{ cout << "\n erreur en lecture de la thermodependance de xn, on aurait du lire le mot cle xn_thermo_dependant_"
<< " suivi du nom d'une courbe de charge ou de la courbe elle meme ";
entreePrinc->MessageBuffer("**erreur4 Loi_newton1D::LectureDonneesParticulieres (...**");
throw (UtilLecture::ErrNouvelleDonnee(-1));
Sortie(1);
};
// lecture de la loi d'évolution du coefficient non linéaire en fonction de la température
*(entreePrinc->entree) >> nom;
// on regarde si la courbe existe, si oui on récupère la référence
if (lesCourbes1D.Existe(nom)) { xn_temperature = lesCourbes1D.Trouve(nom);}
else { // sinon il faut la lire maintenant
string non_courbe("_");
xn_temperature = Courbe1D::New_Courbe1D(non_courbe,Id_Nom_Courbe1D (nom.c_str()));
// lecture de la courbe
xn_temperature->LectDonnParticulieres_courbes (non_courbe,entreePrinc);
};
// prepa du flot de lecture
if(strstr(entreePrinc->tablcar,"fin_coeff_NEWTON1D")==0) entreePrinc->NouvelleDonnee();
}
else
{ // lecture du coeff
*(entreePrinc->entree) >> xn ;
};
};
if (strstr(entreePrinc->tablcar,"Deps0=")!=NULL)
{ *(entreePrinc->entree) >> nom ;
#ifdef MISE_AU_POINT
if (nom != "Deps0=")
{ cout << "\n erreur en lecture de la loi de Newton, on attendait Deps0= suivi d'un nombre "
<< " et on a lu: " << nom <<" ";
entreePrinc->MessageBuffer("**erreur5 Loi_newton1D::LectureDonneesParticulieres (...**");
throw (UtilLecture::ErrNouvelleDonnee(-1));
Sortie(1);
};
#endif
// lecture du coeff
*(entreePrinc->entree) >> Deps0 ;
};
// prepa du flot de lecture
if(strstr(entreePrinc->tablcar,"fin_coeff_NEWTON1D")==0) entreePrinc->NouvelleDonnee();
// appel au niveau de la classe mère
Loi_comp_abstraite::Lecture_type_deformation_et_niveau_commentaire
(*entreePrinc,lesFonctionsnD);
};
// affichage de la loi
void Loi_newton1D::Affiche() const
{ cout << " \n loi de comportement Newton 1D ";
if ( mu_temperature != NULL) { cout << " viscosite thermo dependant "
<< " courbe mu=f(T): " << mu_temperature->NomCourbe() <<" ";}
else { cout << " viscosite mu= " << mu ;}
if (!simple)
{ if (xn_temperature != NULL) { cout << " coef non lineaire thermo dependant "
<< " courbe xn=f(T): " << xn_temperature->NomCourbe() <<" ";}
else { cout << " coef non lin xn= " << xn ;}
};
cout << " Deps0= "<> nom;
if (nom != "NEWTON1D")
{ cout << "\n erreur en lecture de la loi : Loi_newton1D, on attendait le mot cle : NEWTON1D "
<< "\n Loi_newton1D::Lecture_base_info_loi(...";
Sortie(1);
};
// ensuite normalement il n'y a pas de pb de lecture puisque c'est écrit automatiquement (sauf en debug)
// viscosité
bool test; ent >> nom >> test;
if (!test)
{ ent >> mu;
if (mu_temperature != NULL) {if (mu_temperature->NomCourbe() == "_") delete mu_temperature; mu_temperature = NULL;};
}
else
{ ent >> nom; mu_temperature = lesCourbes1D.Lecture_pour_base_info(ent,cas,mu_temperature); };
// le coef non linéaire
ent >> nom >> nom >> simple >> test;
if (!test)
{ ent >> xn;
if (xn_temperature != NULL) {if (xn_temperature->NomCourbe() == "_") delete xn_temperature; xn_temperature = NULL;};
}
else
{ ent >> nom; xn_temperature = lesCourbes1D.Lecture_pour_base_info(ent,cas,xn_temperature); };
ent >> nom >> Deps0;
};
Loi_comp_abstraite::Lecture_don_base_info(ent,cas,lesRef,lesCourbes1D,lesFonctionsnD);
};
// cas donne le niveau de sauvegarde
// = 1 : on sauvegarde tout
// = 2 : on sauvegarde uniquement les données variables (supposées comme telles)
void Loi_newton1D::Ecriture_base_info_loi(ofstream& sort,const int cas)
{ if (cas == 1)
{ sort << " NEWTON1D " ;
sort << "\n viscosite ";
if (mu_temperature == NULL)
{ sort << false << " " << mu << " ";}
else
{ sort << true << " fonction_mu_temperature ";
LesCourbes1D::Ecriture_pour_base_info(sort,cas,mu_temperature);
};
sort << "\n non_lineaire " << " simple " << simple << " ";
if (xn_temperature == NULL)
{ sort << false << " " << xn << " ";}
else
{ sort << true << " fonction_xn_temperature ";
LesCourbes1D::Ecriture_pour_base_info(sort,cas,xn_temperature);
};
sort << " Deps0= "<& ,double& ,double& ,TenseurHH & sigHH_
,EnergieMeca & energ,const EnergieMeca & energ_t,double& module_compressibilite,double& module_cisaillement
,const Met_abstraite::Expli_t_tdt& )
{
#ifdef MISE_AU_POINT
if (DepsBB_.Dimension() != 1)
{ cout << "\nErreur : la dimension devrait etre 1 !\n";
cout << " Loi_newton1D::Calcul_SigmaHH\n";
Sortie(1);
};
#endif
const Tenseur1BB & DepsBB = *((Tenseur1BB*) &DepsBB_); // passage en dim 1
const Tenseur1HH & gijHH = *((Tenseur1HH*) &gijHH_); // " " " "
Tenseur1HH & sigHH = *((Tenseur1HH*) &sigHH_); // " " " "
// cas de la thermo dépendance, on calcul les grandeurs
if (mu_temperature != NULL) mu = mu_temperature->Valeur(*temperature);
if (xn_temperature != NULL) xn = xn_temperature->Valeur(*temperature);
Tenseur1BH DepsBH = DepsBB * gijHH;
double d2= DepsBH && DepsBH; // inter
if (!simple && (d2>=ConstMath::trespetit) ) // cas d'une viscosité non linéaire et une vitesse non nulle
{ // cas d'une viscosité linéaire
Tenseur1BH sigBH = mu * DepsBH;
sigHH = gijHH * sigBH;
}
else
{ // cas d'une viscosité non linéaire
Tenseur1BH sigBH = (mu * pow((d2+Deps0),(0.5*xn))) * DepsBH;
sigHH = gijHH * sigBH;
}
// traitement des énergies
energ.Inita(0.);
double deltat=ParaGlob::Variables_de_temps().IncreTempsCourant(); // recup de l'incrément de temps
// on considère une vitesse de déformation constante sur le pas de temps
energ.ChangeDissipationVisqueuse(energ_t.DissipationVisqueuse()+(sigHH && DepsBB)*deltat);
// on libère les tenseurs intermédiaires
LibereTenseur(); LibereTenseurQ();
};
// calcul des contraintes a t+dt et de ses variations
void Loi_newton1D::Calcul_DsigmaHH_tdt (TenseurHH& ,TenseurBB& DepsBB_,DdlElement & tab_ddl
,BaseB& ,TenseurBB & ,TenseurHH & ,
BaseB& ,Tableau & ,BaseH& ,Tableau & ,
TenseurBB & ,Tableau & d_epsBB,TenseurBB & ,
TenseurBB & ,TenseurHH & gijHH_tdt,
Tableau & d_gijBB_tdt,
Tableau & d_gijHH_tdt,double& , double& ,
Vecteur& ,TenseurHH& sigHH_tdt,Tableau & d_sigHH
,EnergieMeca & energ,const EnergieMeca & energ_t,double& module_compressibilite,double& module_cisaillement
,const Met_abstraite::Impli& )
{
#ifdef MISE_AU_POINT
if (DepsBB_.Dimension() != 1)
{ cout << "\nErreur : la dimension devrait etre 1 !\n";
cout << " Loi_newton1D::Calcul_DsigmaHH_tdt\n";
Sortie(1);
};
if (tab_ddl.NbDdl() != d_gijBB_tdt.Taille())
{ cout << "\nErreur : le nb de ddl est != de la taille de d_gijBB_tdt !\n";
cout << " Loi_newton1D::Calcul_SDsigmaHH_tdt\n";
Sortie(1);
};
#endif
const Tenseur1BB & DepsBB = *((Tenseur1BB*) &DepsBB_); // passage en dim 1
const Tenseur1HH & gijHH = *((Tenseur1HH*) &gijHH_tdt); // " " " "
Tenseur1HH & sigHH = *((Tenseur1HH*) &sigHH_tdt); // " " " "
// cas de la thermo dépendance, on calcul les grandeurs
if (mu_temperature != NULL) mu = mu_temperature->Valeur(*temperature);
if (xn_temperature != NULL) xn = xn_temperature->Valeur(*temperature);
Tenseur1BH DepsBH = DepsBB * gijHH;
Tenseur1BH sigBH = mu * DepsBH; // cas d'une viscosité linéaire
double d2= DepsBH && DepsBH; // inter
if (!simple && (d2>=ConstMath::trespetit) ) // cas d'une viscosité non linéaire et une vitesse non nulle
{sigBH *= pow((d2+Deps0),(0.5*xn)) ;}
sigHH = gijHH * sigBH;
int nbddl = d_gijBB_tdt.Taille();
// recup de l'incrément de temps
double deltat=ParaGlob::Variables_de_temps().IncreTempsCourant();
double unSurDeltat;
if (Abs(deltat) >= ConstMath::trespetit)
{unSurDeltat = 1./deltat;}
else
// si l'incrément de temps est tres petit on remplace 1/deltat par un nombre tres grand
{unSurDeltat = Signe(deltat)*ConstMath::tresgrand;}
// boucle sur les ddl
for (int i = 1; i<= nbddl; i++)
{// on fait uniquement une égalité d'adresse de manière à ne pas utiliser
// le constructeur d'ou la profusion d'* et de ()
Tenseur1HH & dsigHH = *((Tenseur1HH*) (d_sigHH(i))); // passage en dim 1
const Tenseur1BB & dgijBB = *((Tenseur1BB*)(d_gijBB_tdt(i))); // passage en dim 1
const Tenseur1HH & dgijHH = *((Tenseur1HH*)(d_gijHH_tdt(i))) ; // pour simplifier l'ecriture
const Tenseur1BB & depsBB = *((Tenseur1BB *) (d_epsBB(i))); // "
// variation de la vitesse de déformation
Tenseur1BH dDepsBH = ( unSurDeltat) * depsBB * gijHH_tdt + DepsBB * dgijHH;
if ((simple)||(d2<=ConstMath::trespetit)) // cas d'une viscosité linéaire ou vitesse nulle
{ dsigHH = dgijHH * sigBH + gijHH * mu * dDepsBH;}
else // cas d'une viscosité non linéaire
{ double dDHB_DHB = dDepsBH && DepsBH;
dsigHH = dgijHH * sigBH
+ gijHH * ((mu * xn * pow((d2+Deps0),(xn*0.5-1.))*dDHB_DHB) * DepsBH + (mu * pow((d2+Deps0),(0.5*xn))) * dDepsBH);
}
} //-- fin de la boucle sur les ddl
// traitement des énergies
energ.Inita(0.);
// on considère une vitesse de déformation constante sur le pas de temps
energ.ChangeDissipationVisqueuse(energ_t.DissipationVisqueuse()+(sigHH && DepsBB)*deltat);
// on libère les tenseurs intermédiaires
LibereTenseur(); LibereTenseurQ();
};