// FICHIER : Met_Sfe1s3.cc // CLASSE : Met_Sfe1 // This file is part of the Herezh++ application. // // The finite element software Herezh++ is dedicated to the field // of mechanics for large transformations of solid structures. // It is developed by Gérard Rio (APP: IDDN.FR.010.0106078.000.R.P.2006.035.20600) // INSTITUT DE RECHERCHE DUPUY DE LÔME (IRDL) <https://www.irdl.fr/>. // // Herezh++ is distributed under GPL 3 license ou ultérieure. // // Copyright (C) 1997-2022 Université Bretagne Sud (France) // AUTHOR : Gérard Rio // E-MAIL : gerardrio56@free.fr // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, // or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty // of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <https://www.gnu.org/licenses/>. // // For more information, please consult: <https://herezh.irdl.fr/>. # include <iostream> using namespace std; //introduces namespace std #include <math.h> #include <stdlib.h> #include "Sortie.h" #include "Util.h" #include "MathUtil.h" #include "MathUtil2.h" #include "Met_Sfe1.h" // ========================================================================================= // vu la taille des executables le fichier est decompose en quatre // le premier : Met_Sfe1s1.cp concerne les constructeurs, destructeur et // la gestion des variables // le second : Met_Sfe1s2.cp concerne le calcul des grandeurs publics // le troisieme : Met_Sfe1s3.cp concerne le calcul des grandeurs protegees, et des courbures pour SFE1 et SFE2 et QSFE1 // le quatrième : Met_Sfe1s4.cp concerne le calcul des courbures pour les éléments SFE3 et QSFE3 // ========================================================================================= // routine (4) generale de calcul de la courbure // cas 4: calcul de la courbure à partir d'un polynôme passant par les 6 points Tenseur_ns2BB Met_Sfe1::Courbure4 ( const Tableau<Coordonnee3>& tab_coor, const BaseB & aiB , const BaseH & aiH ,Tableau <EnuTypeCL> const & tabTypeCL,Tableau <Coordonnee3> const & vplan) { // calcul de la normale centrale // on utilise des expressions strictement identique ici et dans dcourbure // de manière à éviter les erreurs d'arrondis //Coordonnee3 N = (Util::ProdVec_coorBN(aiB(1),aiB(2))).Normer(); // calcul de la normale centrale Coordonnee3 NN = Util::ProdVec_coorBN(aiB(1),aiB(2)); // normale non normee double nor = NN.Norme(); // la norme Coordonnee3 N = NN / nor; Mat_pleine mat(3,3); // matrice pour calculer le tenseur de courbure Vecteur sm(3); // le second membre pour le calcul de la courbure // origine const Coordonnee3& Op=tab_coor(1);// origine du repère local // le meme calcul est effectue pour les trois cotes du triangle principale //1- on utilise indi un tableau d'indice pour ne pas etre embete par les modulos 3 // 2- on boucle sur le cotes du triangle Coordonnee3 U1,CB,V,OpA; Coordonnee3 Mm,OpMm; Coordonnee3 OpAp; // le vecteur horizontal correspondant à OpA for (int ncot=1;ncot<=3;ncot++) { // on utilise les notations : triangle principal DBC et secondaire BAC // simplification de l'ecriture (vérifiée) const Coordonnee3& D = tab_coor(indi(ncot)); const Coordonnee3& B = tab_coor(indi(ncot+1)); const Coordonnee3& C = tab_coor(indi(ncot+2)); const Coordonnee3& A = tab_coor(indi(ncot)+3); // examen de condition limite éventuelle // ncot % 3 +1: = le coté en face du noeud ncot if (tabTypeCL(ncot % 3 +1) != TANGENTE_CL) { // cas sans conditions limites particulières if (D != A) // cas ou le noeud externe existe {OpA = A - Op; double theta3 = OpA * N; // cote du point externe OpAp = OpA - theta3 * N; // projection de OpA sur la facette double theta1 = OpAp * aiH.Coordo(1); double theta2 = OpAp * aiH.Coordo(2); // les coordonnées locales de A // construction de la ligne de la matrice mat(ncot,1) = theta1 * (theta1 - 1.); mat(ncot,2) = theta2 * (theta2 - 1.); mat(ncot,3) = theta1 * theta2; // et du second membre correspondant sm(ncot) = theta3; } else // cas ou il n'y a pas de noeud externe {// On va calculer la normale non normée au coté externe // ce vecteur est dans le plan de la facette CB = B - C; U1 = CB ; V = Util::ProdVec_coor(N,U1); // maintenant on calcul les coordonnées locales de V double theta1 = V * aiH.Coordo(1); double theta2 = V * aiH.Coordo(2); // construction de la ligne de la matrice mat(ncot,1) = theta1 * theta1; mat(ncot,2) = theta2 * theta2; mat(ncot,3) = theta1 * theta2; // et du second membre correspondant sm(ncot) = 0; }; } else { // cas avec une condition de tangente imposée // on commence par définir la direction de la tangente CB = B - C; V = Util::ProdVec_coor(CB,vplan(ncot % 3 +1)); // calcul des coordonnées locales du vecteur tangent double d1 = V*aiH.Coordo(1); double d2=V*aiH.Coordo(2); double d3 = V*N; // on calcul les coordonnées du point milieu de BC que l'on nome Mm Mm = 0.5*(B+C); OpMm = Mm - Op; // les coordonnées locales de Mm double theta1 = OpMm * aiH.Coordo(1); double theta2 = OpMm * aiH.Coordo(2); // construction de la ligne de la matrice mat(ncot,1) = (2.*theta1 - 1.) * d1; mat(ncot,2) = (2.*theta2 - 1.) * d2; mat(ncot,3) = (theta1 * d2 + theta2 * d1); // et du second membre correspondant sm(ncot) = d3; }; }; // calcul du tenseur de courbure dans la base ai Mat_pleine mati = mat.Inverse(); Vecteur curbi = mati * sm; // retour de la courbure Tenseur_ns2BB curb; curb.Coor(1,1)=2. * curbi(1); curb.Coor(1,2)=curb.Coor(2,1)=curbi(3); curb.Coor(2,2)= 2. * curbi(2); return curb; }; // routine (4) generale de calcul de la courbure et de sa variation // en sortie : curb , la courbure b11,b12,b22 // dcurb , la variation de courbure. // On ne considere dans les variations que les termes relatif aux ddl qui font varier // les normales // cas 4: calcul de la courbure à partir d'un polynôme passant par les 6 points void Met_Sfe1::Dcourbure4 ( const Tableau<Coordonnee3>& tab_coor, const BaseB & aiB , const Tableau <BaseB>& DaiB,const BaseH & aiH , const Tableau <BaseH>& DaiH,Tenseur_ns2BB& curb,TabOper <Tenseur_ns2BB>& dcurb ,Tableau <EnuTypeCL> const & tabTypeCL,Tableau <Coordonnee3> const & vplan) { int nbddl = (nbNoeudCentral+3)*3; //18; // nombre de ddl total Coordonnee3 Nul; // le vecteur nul de dim 3, pour les initialisations Mat_pleine mat(3,3); // matrice pour calculer le tenseur de courbure Tableau <Mat_pleine> dmat(nbddl,mat); // sa variation Vecteur sm(3); // le second membre pour le calcul de la courbure Tableau <Vecteur> dsm(nbddl,sm); // sa variation // calcul de la normale centrale Coordonnee3 NN = Util::ProdVec_coorBN(aiB(1),aiB(2)); // normale non normee double nor = NN.Norme(); // la norme Coordonnee3 N = NN / nor; Coordonnee3 DNN; // vecteur intermediaire // calcul de la variation de la normale centrale : vérifiée Tableau <Coordonnee3> dN(nbddl,Nul); // on s'intéresse ici qu'aux ddl de la face centrale for (int inc=1;inc<=3;inc++) // indice du numéro de noeud de la face centrale for (int ib=1;ib<=3;ib++) { // cas de la normale int i1=(inc-1)*3+ib; DNN = Util::ProdVec_coorBN(DaiB(i1)(1),aiB(2)) + Util::ProdVec_coorBN(aiB(1),DaiB(i1)(2)); dN(i1) = Util::VarUnVect_coor(NN,DNN,nor); }; // origine const Coordonnee3& Op=tab_coor(1);// origine du repère local Tableau <Coordonnee3> dOp(nbddl,Nul); dOp(1)=Ia(1);dOp(2)=Ia(2);dOp(3)=Ia(3); // et les autres dérivées sont nulles // le meme calcul est effectue pour les trois cotes du triangle principale //1- on utilise un tableau d'indice pour ne pas etre embete par les modulos 3 // 2- on boucle sur le cotes du triangle Coordonnee3 CB,U1,V,dV; Coordonnee3 OpA,OpAp; Coordonnee3 dA,dOpA,dOpAp,dB,dC; Coordonnee3 Mm,dMm,OpMm,dOpMm; for (int ncot=1;ncot<=3;ncot++) { // on utilise les notations : triangle principal DBC et secondaire BAC // simplification de l'ecriture const Coordonnee3& D = tab_coor(indi(ncot)); const Coordonnee3& B = tab_coor(indi(ncot+1)); const Coordonnee3& C = tab_coor(indi(ncot+2)); const Coordonnee3& A = tab_coor(indi(ncot)+3); // examen de condition limite éventuelle int nbcote = ncot % 3 +1; // le numéro du coté en face du noeud ncot if (tabTypeCL(nbcote) != TANGENTE_CL) { // cas sans conditions limites particulières if (D != A) // cas ou le noeud externe existe {OpA = A - Op; double theta3 = OpA * N; // cote du point externe OpAp = OpA - theta3 * N; // projection de OpA sur la facette // les coordonnées locales de A double theta1 = OpAp * aiH.Coordo(1); double theta2 = OpAp * aiH.Coordo(2); // construction de la ligne de la matrice mat(ncot,1) = theta1 * (theta1 - 1.); mat(ncot,2) = theta2 * (theta2 - 1.); mat(ncot,3) = theta1 * theta2; // et du second membre correspondant sm(ncot) = theta3; // calcul des variations for (int ia=1;ia<= 3;ia++) {{// indice de A: jnA, noeud extérieur int jnA = 9+(ncot-1)*3+ia; dA = Ia(ia); dOpA = dA; // dOp(jnA)=0 // OpA = A - Op; // la coordonnée en 3 double dtheta3 = dOpA * N; // dN(jnA)=0 car noeud externe // theta3 = OpA * N dOpAp = dOpA - dtheta3 * N ; //dN(jnA)=0; // OpAp = OpA - theta3 * N // les coordonnées locales double dtheta1 = dOpAp * aiH.Coordo(1); // DaiH(jnA).Coordo(1)=0; // theta1 = OpAp * aiH.Coordo(1) double dtheta2 = dOpAp * aiH.Coordo(2);// DaiH(jnA).Coordo(2)=0; // theta2 = OpAp * aiH.Coordo(2) // la matrice dmat(jnA)(ncot,1)= dtheta1 * (theta1 - 1.) + theta1 * dtheta1; // mat(ncot,1) = theta1 * (theta1 - 1.) dmat(jnA)(ncot,2)= dtheta2 * (theta2 - 1.) + theta2 * dtheta2; // mat(ncot,2) = theta2 * (theta2 - 1.) dmat(jnA)(ncot,3)= dtheta1 * theta2 + theta1 * dtheta2; // mat(ncot,3) = theta1 * theta2 // le second membre dsm(jnA)(ncot) = dtheta3; // sm(ncot) = theta3 } {// indice de B: jnB, noeud de la facette centrale int jnB = (indi(ncot+1)-1)*3+ia; // dA = 0 ; dOpA = - dOp(jnB); // OpA = A - Op; // la coordonnée en 3 double dtheta3 = dOpA * N + OpA * dN(jnB); // theta3 = OpA * N dOpAp = dOpA - dtheta3 * N - theta3 * dN(jnB); // OpAp = OpA - theta3 * N // les coordonnées locales // 1) à noter ici que OpAp est un vecteur de la facette, donc normale à N, et que DaiH ne contient que les // variations plane de aiH (il manque les variations suivant la normale) mais cette partie suffit car la partie // qui manque est suivant N et donc normale à OpAp (donc elle disparait au niveau du produit scalaire) double dtheta1 = dOpAp * aiH.Coordo(1) + OpAp * DaiH(jnB).Coordo(1); // theta1 = OpAp * aiH.Coordo(1) double dtheta2 = dOpAp * aiH.Coordo(2) + OpAp * DaiH(jnB).Coordo(2); // theta2 = OpAp * aiH.Coordo(2) // la matrice dmat(jnB)(ncot,1)= dtheta1 * (theta1 - 1.) + theta1 * dtheta1; // mat(ncot,1) = theta1 * (theta1 - 1.) dmat(jnB)(ncot,2)= dtheta2 * (theta2 - 1.) + theta2 * dtheta2; // mat(ncot,2) = theta2 * (theta2 - 1.) dmat(jnB)(ncot,3)= dtheta1 * theta2 + theta1 * dtheta2; // mat(ncot,3) = theta1 * theta2 // le second membre dsm(jnB)(ncot) = dtheta3; // sm(ncot) = theta3 } {// indice de C: jnC int jnC = (indi(ncot+2)-1)*3+ia; // dA = 0 ; dOpA = - dOp(jnC); // OpA = A - Op; // la coordonnée en 3 double dtheta3 = dOpA * N + OpA * dN(jnC); // theta3 = OpA * N dOpAp = dOpA - dtheta3 * N - theta3 * dN(jnC); // OpAp = OpA - theta3 * N // les coordonnées locales // mêmes remarques 1) que plus haut double dtheta1 = dOpAp * aiH.Coordo(1) + OpAp * DaiH(jnC).Coordo(1); // theta1 = OpAp * aiH.Coordo(1) double dtheta2 = dOpAp * aiH.Coordo(2) + OpAp * DaiH(jnC).Coordo(2); // theta2 = OpAp * aiH.Coordo(2) // la matrice dmat(jnC)(ncot,1)= dtheta1 * (theta1 - 1.) + theta1 * dtheta1; // mat(ncot,1) = theta1 * (theta1 - 1.) dmat(jnC)(ncot,2)= dtheta2 * (theta2 - 1.) + theta2 * dtheta2; // mat(ncot,2) = theta2 * (theta2 - 1.) dmat(jnC)(ncot,3)= dtheta1 * theta2 + theta1 * dtheta2; // mat(ncot,3) = theta1 * theta2 // le second membre dsm(jnC)(ncot) = dtheta3; // sm(ncot) = theta3 } {// indice de D: jnD int jnD = (indi(ncot)-1)*3+ia; // dA = 0 ; dOpA = - dOp(jnD); // OpA = A - Op; // la coordonnée en 3 double dtheta3 = dOpA * N + OpA * dN(jnD); // theta3 = OpA * N dOpAp = dOpA - dtheta3 * N - theta3 * dN(jnD); // OpAp = OpA - theta3 * N // les coordonnées locales // mêmes remarques 1) que plus haut double dtheta1 = dOpAp * aiH.Coordo(1) + OpAp * DaiH(jnD).Coordo(1); // theta1 = OpAp * aiH.Coordo(1) double dtheta2 = dOpAp * aiH.Coordo(2) + OpAp * DaiH(jnD).Coordo(2); // theta2 = OpAp * aiH.Coordo(2) // la matrice dmat(jnD)(ncot,1)= dtheta1 * (theta1 - 1.) + theta1 * dtheta1; // mat(ncot,1) = theta1 * (theta1 - 1.) dmat(jnD)(ncot,2)= dtheta2 * (theta2 - 1.) + theta2 * dtheta2; // mat(ncot,2) = theta2 * (theta2 - 1.) dmat(jnD)(ncot,3)= dtheta1 * theta2 + theta1 * dtheta2; // mat(ncot,3) = theta1 * theta2 // le second membre dsm(jnD)(ncot) = dtheta3; // sm(ncot) = theta3 } }; // fin du for sur ia } else // cas ou il n'y a pas de noeud externe { // On va calculer la normale non normée au coté externe // ce vecteur est dans le plan de la facette CB = B - C; U1 = CB ; V = Util::ProdVec_coor(N,U1); // maintenant on calcul les coordonnées locales de V double theta1 = V * aiH.Coordo(1); double theta2 = V * aiH.Coordo(2); // construction de la ligne de la matrice mat(ncot,1) = theta1 * theta1; mat(ncot,2) = theta2 * theta2; mat(ncot,3) = theta1 * theta2; // et du second membre correspondant sm(ncot) = 0; // calcul des variations for (int ia=1;ia<= 3;ia++) { // {// indice de A: jnA, noeud extérieur // comme il n'y a pas de noeud extérieur et que N ne dépend pas des ddl extérieur, // normalement jnA n'intervient pas !! // int jnA = 9+(ncot-1)*3+ia; // // dCB = 0.; // CB = B - C // // dU1 = 0.; // U1 = CB // dV = Util::ProdVec_coor(dN(jnA),U1); // V = Util::ProdVec_coor(N,U1) // double dtheta1 = dV * aiH.Coordo(1) + V * DaiH(jnA).Coordo(1); // theta1 = V * aiH.Coordo(1); // double dtheta2 = dV * aiH.Coordo(2) + V * DaiH(jnA).Coordo(2); // theta2 = V * aiH.Coordo(2); // dmat(jnA)(ncot,1) = 2.* dtheta1 * theta1; // mat(ncot,1) = theta1 * theta1 // dmat(jnA)(ncot,2) = 2.* dtheta2 * theta2; // mat(ncot,2) = theta2 * theta2 // dmat(jnA)(ncot,3) = (dtheta1 * theta2 + theta1 * dtheta2); // mat(ncot,3) = 2. * theta1 * theta2 // dsm(jnA)(ncot) = 0.; // sm(ncot) = 0 // } {// indice de B: jnB, noeud de la facette centrale int jnB = (indi(ncot+1)-1)*3+ia; dB = Ia(ia); // d_CB = dB // CB = B - C // dU1 = dB; // U1 = CB dV = Util::ProdVec_coor(dN(jnB),U1) + Util::ProdVec_coor(N,dB); // V = Util::ProdVec_coor(N,U1) // 2) à noter ici que V est un vecteur de la facette, donc normale à N, et que DaiH ne contient que les // variations plane de aiH (il manque les variations suivant la normale) mais cette partie suffit car la partie // qui manque est suivant N et donc normale à V (donc elle disparait au niveau du produit scalaire) double dtheta1 = dV * aiH.Coordo(1) + V * DaiH(jnB).Coordo(1); // theta1 = V * aiH.Coordo(1); double dtheta2 = dV * aiH.Coordo(2) + V * DaiH(jnB).Coordo(2); // theta2 = V * aiH.Coordo(2); dmat(jnB)(ncot,1) = 2.* dtheta1 * theta1; // mat(ncot,1) = theta1 * theta1 dmat(jnB)(ncot,2) = 2.* dtheta2 * theta2; // mat(ncot,2) = theta2 * theta2 dmat(jnB)(ncot,3) = (dtheta1 * theta2 + theta1 * dtheta2); // mat(ncot,3) = 2. * theta1 * theta2 dsm(jnB)(ncot) = 0.; // sm(ncot) = 0 } {// indice de C: jnC int jnC = (indi(ncot+2)-1)*3+ia; dC = Ia(ia); //dCB = -dC; // CB = B - C // dU1 = -dC; // U1 = CB dV = Util::ProdVec_coor(dN(jnC),U1) + Util::ProdVec_coor(N,-dC); // V = Util::ProdVec_coor(N,U1) // mêmes remarques 2) que plus haut double dtheta1 = dV * aiH.Coordo(1) + V * DaiH(jnC).Coordo(1); // theta1 = V * aiH.Coordo(1); double dtheta2 = dV * aiH.Coordo(2) + V * DaiH(jnC).Coordo(2); // theta2 = V * aiH.Coordo(2); dmat(jnC)(ncot,1) = 2.* dtheta1 * theta1; // mat(ncot,1) = theta1 * theta1 dmat(jnC)(ncot,2) = 2.* dtheta2 * theta2; // mat(ncot,2) = theta2 * theta2 dmat(jnC)(ncot,3) = (dtheta1 * theta2 + theta1 * dtheta2); // mat(ncot,3) = 2. * theta1 * theta2 dsm(jnC)(ncot) = 0.; // sm(ncot) = 0 } {// indice de D: jnD int jnD = (indi(ncot)-1)*3+ia; // dCB = 0.; // CB = B - C // dU1 = 0.; // U1 = CB dV = Util::ProdVec_coor(dN(jnD),U1); // V = Util::ProdVec_coor(N,U1) // mêmes remarques 2) que plus haut double dtheta1 = dV * aiH.Coordo(1) + V * DaiH(jnD).Coordo(1); // theta1 = V * aiH.Coordo(1); double dtheta2 = dV * aiH.Coordo(2) + V * DaiH(jnD).Coordo(2); // theta2 = V * aiH.Coordo(2); dmat(jnD)(ncot,1) = 2.* dtheta1 * theta1; // mat(ncot,1) = theta1 * theta1 dmat(jnD)(ncot,2) = 2.* dtheta2 * theta2; // mat(ncot,2) = theta2 * theta2 dmat(jnD)(ncot,3) = (dtheta1 * theta2 + theta1 * dtheta2); // mat(ncot,3) = 2. * theta1 * theta2 dsm(jnD)(ncot) = 0.; // sm(ncot) = 0 } }; // fin du for sur ia }; // fin du cas où il n'y a pas de noeud externe } else { // cas avec une condition de tangente imposée // on commence par définir la direction de la tangente CB = B - C; V = Util::ProdVec_coor(CB,vplan(nbcote)); // on calcul les coordonnées du point milieu de BC que l'on nome Mm Mm = 0.5*(B+C); OpMm = Mm - Op; // calcul des coordonnées locales du vecteur tangent double d1 = V*aiH.Coordo(1); double d2=V*aiH.Coordo(2); double d3 = V*N; // les coordonnées locales de Mm double theta1 = OpMm * aiH.Coordo(1); double theta2 = OpMm * aiH.Coordo(2); // les coordonnée sont ici des coordonnées matérielles qui dans le cas linéaires sont constantes (0.5,0) ou // (0.5,0.5) ou (0,0.5) leur variations est donc nulles // ***** donc on peut simplifier les expressions qui suivent en annulant les variations de theta_alpha // construction de la ligne de la matrice mat(ncot,1) = (2.*theta1 - 1.) * d1; mat(ncot,2) = (2.*theta2 - 1.) * d2; mat(ncot,3) = (theta1 * d2 + theta2 * d1); // et du second membre correspondant sm(ncot) = d3; // calcul des variations for (int ia=1;ia<= 3;ia++) { {// indice de B: jnB, noeud de la facette centrale int jnB = (indi(ncot+1)-1)*3+ia; dB = Ia(ia); // d_CB = dB // CB = B - C dV = Util::ProdVec_coor(dB,vplan(nbcote)); // V = Util::ProdVec_coor(CB,vplan(nbcote)) // mêmes remarques 2) que plus haut double dd1=dV*aiH.Coordo(1)+V*DaiH(jnB).Coordo(1); // d1 = V*aiH.Coordo(1) double dd2=dV*aiH.Coordo(2)+V*DaiH(jnB).Coordo(2); // d2=V*aiH.Coordo(2) double dd3=dV*N+V*dN(jnB); // d3 = V*N // dMm = 0.5 * dB ; // Mm = 0.5*(B+C); dOpMm = 0.5 * dB - dOp(jnB); // OpMm = Mm - Op; // les coordonnées locales // ici également, OpMm est dans le plan de la facette d'où mêmes remarques 2) que plus haut double dtheta1 = dOpMm * aiH.Coordo(1) + OpMm * DaiH(jnB).Coordo(1); // theta1 = OpMm * aiH.Coordo(1) double dtheta2 = dOpMm * aiH.Coordo(2) + OpMm * DaiH(jnB).Coordo(2); // theta2 = OpMm * aiH.Coordo(2) dmat(jnB)(ncot,1) = (2.*dtheta1-1.)*d1+(2.*theta1-1.)*dd1; // mat(ncot,1) = (2.*theta1 - 1.) * d1 dmat(jnB)(ncot,2) = (2.*dtheta2-1.)*d2+(2.*theta2-1.)*dd2; // mat(ncot,1) = (2.*theta1 - 1.) * d1 dmat(jnB)(ncot,3) = (dtheta1*d2+dtheta2*d1)+(theta1*dd2+theta2*dd1); // mat(ncot,3) = (theta1 * d2 + theta2 * d1); dsm(jnB)(ncot) = dd3; // sm(ncot) = d3 } {// indice de C: jnC int jnC = (indi(ncot+2)-1)*3+ia; dC = Ia(ia); //dCB = -dC; // CB = B - C dV = Util::ProdVec_coor(-dC,vplan(nbcote)); // V = Util::ProdVec_coor(CB,vplan(nbcote)) double dd1=dV*aiH.Coordo(1)+V*DaiH(jnC).Coordo(1); // d1 = V*aiH.Coordo(1) double dd2=dV*aiH.Coordo(2)+V*DaiH(jnC).Coordo(2); // d2=V*aiH.Coordo(2) double dd3=dV*N+V*dN(jnC); // d3 = V*N // dMm = 0.5 * dC ; // Mm = 0.5*(B+C); dOpMm = 0.5 * dC - dOp(jnC); // OpMm = Mm - Op; // les coordonnées locales // ici également, OpMm est dans le plan de la facette d'où mêmes remarques 2) que plus haut double dtheta1 = dOpMm * aiH.Coordo(1) + OpMm * DaiH(jnC).Coordo(1); // theta1 = OpMm * aiH.Coordo(1) double dtheta2 = dOpMm * aiH.Coordo(2) + OpMm * DaiH(jnC).Coordo(2); // theta2 = OpMm * aiH.Coordo(2) dmat(jnC)(ncot,1) = (2.*dtheta1-1.)*d1+(2.*theta1-1.)*dd1; // mat(ncot,1) = (2.*theta1 - 1.) * d1 dmat(jnC)(ncot,2) = (2.*dtheta2-1.)*d2+(2.*theta2-1.)*dd2; // mat(ncot,1) = (2.*theta1 - 1.) * d1 dmat(jnC)(ncot,3) = (dtheta1*d2+dtheta2*d1)+(theta1*dd2+theta2*dd1); // mat(ncot,3) = (theta1 * d2 + theta2 * d1); dsm(jnC)(ncot) = dd3; // sm(ncot) = d3 } {// indice de D: jnD int jnD = (indi(ncot)-1)*3+ia; // dCB = 0.; // CB = B - C dV = 0. ; // V = Util::ProdVec_coor(CB,vplan(nbcote)) double dd1=V*DaiH(jnD).Coordo(1); // d1 = V*aiH.Coordo(1) double dd2=V*DaiH(jnD).Coordo(2); // d2=V*aiH.Coordo(2) double dd3=V*dN(jnD); // d3 = V*N // dMm = 0.5 * dB ; // Mm = 0.5*(B+C); dOpMm = - dOp(jnD); // OpMm = Mm - Op; // les coordonnées locales // ici également, OpMm est dans le plan de la facette d'où mêmes remarques 2) que plus haut double dtheta1 = dOpMm * aiH.Coordo(1) + OpMm * DaiH(jnD).Coordo(1); // theta1 = OpMm * aiH.Coordo(1) double dtheta2 = dOpMm * aiH.Coordo(2) + OpMm * DaiH(jnD).Coordo(2); // theta2 = OpMm * aiH.Coordo(2) dmat(jnD)(ncot,1) = (2.*dtheta1-1.)*d1+(2.*theta1-1.)*dd1; // mat(ncot,1) = (2.*theta1 - 1.) * d1 dmat(jnD)(ncot,2) = (2.*dtheta2-1.)*d2+(2.*theta2-1.)*dd2; // mat(ncot,1) = (2.*theta1 - 1.) * d1 dmat(jnD)(ncot,3) = (dtheta1*d2+dtheta2*d1)+(theta1*dd2+theta2*dd1); // mat(ncot,3) = (theta1 * d2 + theta2 * d1); dsm(jnD)(ncot) = dd3; // sm(ncot) = d3 } }; // fin du for sur ia }; // fin du test sur les CL: condition de tangence }; // fin de la boucle sur les 3 noeuds externes // calcul du tenseur de courbure dans la base ai Mat_pleine mati = mat.Inverse(); //---- pour le debug des cas particuliers ---- #ifdef MISE_AU_POINT if (ParaGlob::NiveauImpression() > 3) { int i,j; if (mati.MaxiValAbs(i,j) > ConstMath::grand) { cout << "\n *** Met_Sfe1::Dcourbure4, mati.MaxiValAbs(i,j) est trop grand :\n mat= "; mat.Affiche(); cout << "\n inverse de mat: mati= "; mati.Affiche(); // affichage des éléments du triangle cout << "\n pour chaque cote : on utilise les notations : triangle principal DBC et secondaire BAC"; cout << "\n Op= "<< Op << "\n N= "<< N ; for (int ncot=1;ncot<=3;ncot++) { // on utilise les notations : triangle principal DBC et secondaire BAC // simplification de l'ecriture cout << "\n cote : "<< ncot ; const Coordonnee3& D = tab_coor(indi(ncot)); const Coordonnee3& B = tab_coor(indi(ncot+1)); const Coordonnee3& C = tab_coor(indi(ncot+2)); const Coordonnee3& A = tab_coor(indi(ncot)+3); cout << "\n D= "<< D << "\n B= " << B << "\n C= "<< C << "\n A= "<< A; cout << "\n aiH(1)= "<<aiH.Coordo(1) << "\n aiH(2)= "<<aiH.Coordo(2); int nbcote = ncot % 3 +1; // le numéro du coté en face du noeud ncot if (tabTypeCL(nbcote) != TANGENTE_CL) // seul cas envisagé pour l'instant { // cas sans conditions limites particulières if (D != A) // cas ou le noeud externe existe {OpA = A - Op; double theta3 = OpA * N; // cote du point externe OpAp = OpA - theta3 * N; // projection de OpA sur la facette cout << "\n OpA = A - Op= "<< OpA << "\n OpAp = OpA - theta3 * N= " << OpAp ; // les coordonnées locales de A double theta1 = OpAp * aiH.Coordo(1); double theta2 = OpAp * aiH.Coordo(2); cout << "\n theta1= OpAp * aiH(1)= "<< theta1 << " theta2= OpAp * aiH(2)= " << theta2 << " "; cout << "\n mat(ncot,1) = theta1 * (theta1 - 1.) "; cout << "\n mat(ncot,2) = theta2 * (theta2 - 1.)"; cout << "\n mat(ncot,3) = theta1 * theta2"; cout << "\n sm(ncot) = theta3"; }; }; }; cout << endl; }; }; #endif //---- fin pour le debug des cas particuliers ---- Vecteur curbi = mati * sm; // retour de la courbure curb.Coor(1,1)=2. * curbi(1); curb.Coor(1,2)=curb.Coor(2,1)=curbi(3); curb.Coor(2,2)= 2. * curbi(2); // idem pour les variations Coordonnee3 dcurbi; // Mat_pleine dmata(mat); // une matrice intermédiaire for (int ddl=1;ddl<=nbddl;ddl++) { dcurbi = mati * (dsm(ddl) - dmat(ddl) * curbi ); Tenseur_ns2BB& dcur = dcurb(ddl); // ----- pour le débug // cout << "\n dcurbi(1),(" << ddl << ")= " << dcurbi(1) // << " dcurbi(2),(" << ddl << ")= " << dcurbi(2) // << " dcurbi(3),(" << ddl << ")= " << dcurbi(3) << endl; // ----- fin pour le débug dcur.Coor(1,1)=2. * dcurbi(1); dcur.Coor(1,2)=dcur.Coor(2,1)=dcurbi(3); dcur.Coor(2,2)= 2. * dcurbi(2); }; // ----- pour le débug // Sortie(1); // ----- fin pour le débug }; // test si la courbure est anormalement trop grande // inf_normale : indique en entrée le det mini pour la courbure en locale // retour 1: si tout est ok, // 0: une courbure trop grande a été détecté int Met_Sfe1::Test_courbure_anormale4(double inf_normale, const Tableau<Coordonnee3>& tab_coor , const BaseB & aiB , const BaseH & aiH) { // calcul de la normale centrale // on utilise des expressions strictement identique ici et dans dcourbure // de manière à éviter les erreurs d'arrondis //Coordonnee3 N = (Util::ProdVec_coorBN(aiB(1),aiB(2))).Normer(); // calcul de la normale centrale Coordonnee3 NN = Util::ProdVec_coorBN(aiB(1),aiB(2)); // normale non normee double nor = NN.Norme(); // la norme Coordonnee3 N = NN / nor; Mat_pleine mat(3,3); // matrice pour calculer le tenseur de courbure Vecteur sm(3); // le second membre pour le calcul de la courbure // origine const Coordonnee3& Op=tab_coor(1);// origine du repère local // le meme calcul est effectue pour les trois cotes du triangle principale //1- on utilise indi un tableau d'indice pour ne pas etre embete par les modulos 3 // 2- on boucle sur le cotes du triangle Coordonnee3 U1,CB,V,OpA; Coordonnee3 Mm,OpMm; Coordonnee3 OpAp; // le vecteur horizontal correspondant à OpA for (int ncot=1;ncot<=3;ncot++) { // on utilise les notations : triangle principal DBC et secondaire BAC // simplification de l'ecriture (vérifiée) const Coordonnee3& D = tab_coor(indi(ncot)); const Coordonnee3& B = tab_coor(indi(ncot+1)); const Coordonnee3& C = tab_coor(indi(ncot+2)); const Coordonnee3& A = tab_coor(indi(ncot)+3); // pas d'examen de condition limite éventuelle // on ne considère que le cas sans conditions limites particulières // ncot % 3 +1: = le coté en face du noeud ncot { // cas sans conditions limites particulières if (D != A) // cas ou le noeud externe existe {OpA = A - Op; double theta3 = OpA * N; // cote du point externe OpAp = OpA - theta3 * N; // projection de OpA sur la facette double theta1 = OpAp * aiH.Coordo(1); double theta2 = OpAp * aiH.Coordo(2); // les coordonnées locales de A // construction de la ligne de la matrice mat(ncot,1) = theta1 * (theta1 - 1.); mat(ncot,2) = theta2 * (theta2 - 1.); mat(ncot,3) = theta1 * theta2; // et du second membre correspondant sm(ncot) = theta3; } else // cas ou il n'y a pas de noeud externe {// On va calculer la normale non normée au coté externe // ce vecteur est dans le plan de la facette CB = B - C; U1 = CB ; V = Util::ProdVec_coor(N,U1); // maintenant on calcul les coordonnées locales de V double theta1 = V * aiH.Coordo(1); double theta2 = V * aiH.Coordo(2); // construction de la ligne de la matrice mat(ncot,1) = theta1 * theta1; mat(ncot,2) = theta2 * theta2; mat(ncot,3) = theta1 * theta2; // et du second membre correspondant sm(ncot) = 0; }; } }; // le principe du test est de regarder les valeurs de mat qui doit-être une matrice // non singulière double det = mat.Determinant(); //--- debug #ifdef MISE_AU_POINT //cout << "\n debug Met_Sfe1::Test_courbure_anormale4 " // << " determinant= "<< det; //if (Dabs(det) < ConstMath::petit) if ((Dabs(det) < inf_normale)&& (ParaGlob::NiveauImpression() > 5)) { cout << "\n *** Met_Sfe1::Test_courbure_anormale4, determinant trop petit = "<< det << " \n mat= "; mat.Affiche(); // affichage des éléments du triangle cout << "\n pour chaque cote : on utilise les notations : triangle principal DBC et secondaire BAC"; cout << "\n Op= "<< Op << "\n N= "<< N ; for (int ncot=1;ncot<=3;ncot++) { // on utilise les notations : triangle principal DBC et secondaire BAC // simplification de l'ecriture cout << "\n cote : "<< ncot ; const Coordonnee3& D = tab_coor(indi(ncot)); const Coordonnee3& B = tab_coor(indi(ncot+1)); const Coordonnee3& C = tab_coor(indi(ncot+2)); const Coordonnee3& A = tab_coor(indi(ncot)+3); cout << "\n D= "<< D << "\n B= " << B << "\n C= "<< C << "\n A= "<< A; cout << "\n aiH(1)= "<<aiH.Coordo(1) << "\n aiH(2)= "<<aiH.Coordo(2); int nbcote = ncot % 3 +1; // le numéro du coté en face du noeud ncot { // cas sans conditions limites particulières if (D != A) // cas ou le noeud externe existe {OpA = A - Op; double theta3 = OpA * N; // cote du point externe OpAp = OpA - theta3 * N; // projection de OpA sur la facette cout << "\n OpA = A - Op= "<< OpA << "\n OpAp = OpA - theta3 * N= " << OpAp ; // les coordonnées locales de A double theta1 = OpAp * aiH.Coordo(1); double theta2 = OpAp * aiH.Coordo(2); cout << "\n theta1= OpAp * aiH(1)= "<< theta1 << " theta2= OpAp * aiH(2)= " << theta2 << " "; cout << "\n mat(ncot,1) = theta1 * (theta1 - 1.) "; cout << "\n mat(ncot,2) = theta2 * (theta2 - 1.)"; cout << "\n mat(ncot,3) = theta1 * theta2"; cout << "\n sm(ncot) = theta3"; }; }; }; cout << endl; }; #endif //--- fin debug int retour = 1; // init par défaut // if (det < ConstMath::petit) if (Dabs(det) < inf_normale) retour = 0; // retour de l'indicateur return retour; }; // programme de vérification par différences finies des dérivées void Met_Sfe1::Verif_Dcourbure ( const Tableau<Noeud *>& tab_noeud,bool gradV_instantane ,Mat_pleine const & dphiS,int nombre_noeud,Vecteur const & phiS ,Mat_pleine const & tabdphiH,Vecteur const& phiH,const Epai* epas ,Tableau <EnuTypeCL> const & tabTypeCL,Tableau <Coordonnee3> const & vplan) { // l'idée est de faire une vérification des dérivées à l'aide d'une méthode de différence finie int dim = ParaGlob::Dimension(); // dans le cas du premier passage on indique qu'il y a vérification if (indic_Verif_DcourbureSFE == 0) { cout << "\n ****verification du calcul de la variation de courbure ****"; cout << "\n Met_Sfe1::Verif_Dcourbure(.. \n"; } indic_Verif_DcourbureSFE++; // on définit 2 seconde métriques, car il faudra modifier les vecteurs ai et les vecteurs gi, donc // il vaut mieux travailler sur une copie Met_Sfe1 metrique_bis_1(*this);Met_Sfe1 metrique_bis_2(*this); // ici on considère que l'on a même nombre de ddl par noeud = dim // on va modifier chaque ddl de chaque noeud systématiquement int nbnoeud = tab_noeud.Taille(); // le deltat pour les différences finis double delta = ConstMath::unpeupetit; double mini_val = ConstMath::pasmalpetit; int numddl = 1; // le compteur de ddl int nberr = 10; Tableau<int> erreur(nberr); double diff_admi = 0.1; bool premier_calcul=true; for (int inoeud=1;inoeud<=nbnoeud;inoeud++) // on ne fait la vérification que si le noeud externe existe if (( inoeud <= 3) || ( (tab_noeud(inoeud-3)->Num_noeud()) != (tab_noeud(inoeud)->Num_noeud()))) {// on récupère les coordonnées du noeud Coordonnee coordtdt = tab_noeud(inoeud)->Coord2(); for (int ix= 1;ix<=dim;ix++,numddl++) { Coordonnee X(dim); X(ix) += delta; tab_noeud(inoeud)->Ajout_coord2(X); // appel de la métrique metrique_bis_1.CalSfe1_explicit_tdt( tab_noeud,gradV_instantane,dphiS,nombre_noeud,phiS,premier_calcul ,tabdphiH,phiH,epas,tabTypeCL,vplan); // maintenant on remet les coordonnées du noeud à l'état initial tab_noeud(inoeud)->Change_coord2(coordtdt); // et on décale dégativement X(ix) -= 2*delta; tab_noeud(inoeud)->Ajout_coord2(X); // appel de la métrique metrique_bis_2.CalSfe1_explicit_tdt( tab_noeud,gradV_instantane,dphiS,nombre_noeud,phiS,premier_calcul ,tabdphiH,phiH,epas,tabTypeCL,vplan); // maintenant on remet les coordonnées du noeud à l'état initial tab_noeud(inoeud)->Change_coord2(coordtdt); premier_calcul=false; // calcul des dérivées numériques et vérification int nb_vecteur = 2; for (int j=1;j<=nb_vecteur;j++) { // variation des vecteurs aiB_tdt CoordonneeB daiB = ((*metrique_bis_1.aiB_tdt)(j) -(*metrique_bis_2.aiB_tdt)(j))/(2*delta); CoordonneeB toto = ((*metrique_bis_1.aiB_tdt)(j) -(*metrique_bis_2.aiB_tdt)(j)); for (int i=1;i<=dim;i++) if (diffpourcent(daiB(i),(*d_aiB_tdt)(numddl)(j)(i),MaX(Dabs(daiB(i)),Dabs((*d_aiB_tdt)(numddl)(j)(i))),diff_admi)) { if (DabsMiN(daiB(i),(*d_aiB_tdt)(numddl)(j)(i)) <= mini_val) {if ( DabsMaX(daiB(i),(*d_aiB_tdt)(numddl)(j)(i)) > 50.*delta) {erreur(1) += 1; cout << "\ndaiB("<<i<<")="<<daiB(i)<<",(*d_aiB_tdt)("<<numddl<<")("<<j<<")("<<i<<")="<< (*d_aiB_tdt)(numddl)(j)(i); cout << "\n aiB(xi+delta)="<<(*metrique_bis_1.aiB_tdt)(j)(i) << " aiB(xi-delta)="<<(*metrique_bis_2.aiB_tdt)(j)(i); cout << "\n toto= " << toto << " " << (*aiB_tdt)(j) << " " << (*metrique_bis_1.aiB_tdt)(j); } } else {erreur(2) += 1; cout << "\ndaiB("<<i<<")="<<daiB(i)<<",(*d_aiB_tdt)("<<numddl<<")("<<j<<")("<<i<<")="<< (*d_aiB_tdt)(numddl)(j)(i); }; }; }; for (int j=1;j<=nb_vecteur;j++) { // variation des vecteurs aiH_tdt CoordonneeH d_aiH = ((*metrique_bis_1.aiH_tdt)(j) -(*metrique_bis_2.aiH_tdt)(j))/(2*delta); Coordonnee daiH = d_aiH.Coor_const(); // un coordonné à la même place // en fait la variation de aiH calculée est uniquement celle dans le plan de la facette, il faut donc // retirer la partie hors facette pour la comparaison Met_Sfe1::Calcul_N_tdt(); // calcul de la normale daiH -= ((d_aiH * N_tdt) * N_tdt).Coor_const(); // on retire la partie portée par la normale for (int i=1;i<=dim;i++) if (diffpourcent(daiH(i),(*d_aiH_tdt)(numddl)(j)(i),MaX(Dabs(daiH(i)),Dabs((*d_aiH_tdt)(numddl)(j)(i))),diff_admi)) {if (DabsMiN(daiH(i),(*d_aiH_tdt)(numddl)(j)(i)) <= mini_val) {if ( DabsMaX(daiH(i),(*d_aiH_tdt)(numddl)(j)(i)) > 50.*delta) {erreur(3) += 1; cout << "\ndaiH("<<i<<")="<<daiH(i)<<",(*d_aiH_tdt)("<<numddl<<")("<<j<<")("<<i<<")="<< (*d_aiH_tdt)(numddl)(j)(i); cout << "\n aiH_(xi+delta)="<<(*metrique_bis_1.aiH_tdt)(j)(i) << " aiH_(xi-delta)="<<(*metrique_bis_2.aiH_tdt)(j)(i); } } else {erreur(4) += 1; cout << "\ndaiH("<<i<<")="<<daiH(i)<<",(*d_aiH_tdt)("<<numddl<<")("<<j<<")("<<i<<")="<< (*d_aiH_tdt)(numddl)(j)(i); }; }; }; // on ne peut pas faire la vérif des métriques car elles ne sont pas calculées !! /* // variation du tenseur aijBB_tdt TenseurBB * aijBB = NevezTenseurBB(*metrique_bis_1.aijBB_tdt); *aijBB = (*metrique_bis_1.aijBB_tdt - *metrique_bis_2.aijBB_tdt) / (2*delta); for (int i1=1;i1<=nb_vecteur;i1++) for (int j1=1;j1<=nb_vecteur;j1++) if (diffpourcent((*aijBB)(i1,j1),(*(d_aijBB_tdt(numddl)))(i1,j1), DabsMaX((*aijBB)(i1,j1),(*(d_aijBB_tdt(numddl)))(i1,j1)),diff_admi)) if (DabsMiN((*aijBB)(i1,j1),(*(d_aijBB_tdt(numddl)))(i1,j1)) <= mini_val) {if( DabsMaX((*aijBB)(i1,j1),(*(d_aijBB_tdt(numddl)))(i1,j1)) > 50.*delta) {erreur(5) += 1; cout << "\ndaijBB("<<i1<<","<<j1<<")="<<(*aijBB)(i1,j1)<<",(*d_aijBB_tdt)("<<numddl<<")("<<i1<<","<<j1<<")="<< (*(d_aijBB_tdt(numddl)))(i1,j1); cout << "\n(*d_aiB_tdt)("<<numddl<<")(1)="<< (*d_aiB_tdt)(numddl)(1) << " aiB(1)=" << (*aiB_tdt)(1); }} else erreur(6) += 1; // variation du tenseur aijHH_tdt TenseurHH * aijHH = NevezTenseurHH(*metrique_bis_1.aijHH_tdt); *aijHH = (*metrique_bis_1.aijHH_tdt - *metrique_bis_2.aijHH_tdt) / (2*delta); for (int i1=1;i1<=nb_vecteur;i1++) for (int j1=1;j1<=nb_vecteur;j1++) if (diffpourcent((*aijHH)(i1,j1),(*(d_aijHH_tdt(numddl)))(i1,j1), DabsMaX((*aijHH)(i1,j1),(*(d_aijHH_tdt(numddl)))(i1,j1)),diff_admi)) if (DabsMiN((*aijHH)(i1,j1),(*(d_aijHH_tdt(numddl)))(i1,j1)) <= mini_val) {if( DabsMaX((*aijHH)(i1,j1),(*(d_aijHH_tdt(numddl)))(i1,j1)) > 50.*delta) erreur(7) += 1;} else erreur(8) += 1; */ // variation du tenseur de courbure Tenseur_ns2BB d_curb(curb_tdt); // calcul de la variation de la métrique dans le repère absolu d_curb = (metrique_bis_1.curb_tdt - metrique_bis_2.curb_tdt) / (2*delta); // on calcul the same pour la variation calculée // Tenseur_ns2BB d_curb_glob; // dcurb_tdt(numddl).BaseAbsolue(d_curb_glob,*aiH_tdt); for (int i1=1;i1<=nb_vecteur;i1++) for (int j1=1;j1<=nb_vecteur;j1++) if (diffpourcent(d_curb(i1,j1),dcurb_tdt(numddl)(i1,j1), DabsMaX(d_curb(i1,j1),dcurb_tdt(numddl)(i1,j1)),diff_admi)) {if (DabsMiN(d_curb(i1,j1),dcurb_tdt(numddl)(i1,j1)) <= mini_val) {if( DabsMaX(d_curb(i1,j1),dcurb_tdt(numddl)(i1,j1)) > 50.*delta) {erreur(9) += 1; cout << "\nd_curb("<<i1<<","<<j1<<")="<<d_curb(i1,j1)<<",dcurb_tdt("<<numddl<<")("<<i1<<","<<j1<<")="<< dcurb_tdt(numddl)(i1,j1); cout << "\n curbe= " << curb_tdt << ",dcurb_tdt("<<numddl<<")("<< dcurb_tdt(numddl) ; } } else {erreur(10) += 1; cout << "\nd_curb("<<i1<<","<<j1<<")="<<d_curb(i1,j1)<<",dcurb_tdt("<<numddl<<")("<<i1<<","<<j1<<")="<< dcurb_tdt(numddl)(i1,j1); } }; // effacement des tenseurs intermédiaires // delete aijHH; delete aijBB; };// fin de boucle sur la dimension de coordonnée } // fin du if: s'il y a un noeud externe else {numddl += 3;}; // on passe les ddl // fin de boucle sur les noeuds // message d'erreur si besoin bool une_erreur=false; for (int l=1;l<=nberr;l++) if (erreur(l) != 0) une_erreur=true; if (une_erreur) { cout << "\n erreur dans le calcul analytique des derivees de la courbure"; cout << "\n Met_Sfe1::Verif_Dcourbure(.." << " , numero de passage = " << indic_Verif_DcourbureSFE << " erreur = " << erreur << endl; // Sortie(1); } };