Herezh_dev/Util/MathUtil.cc

160 lines
3.6 KiB
C++
Raw Normal View History

// This file is part of the Herezh++ application.
//
// The finite element software Herezh++ is dedicated to the field
// of mechanics for large transformations of solid structures.
// It is developed by Gérard Rio (APP: IDDN.FR.010.0106078.000.R.P.2006.035.20600)
// INSTITUT DE RECHERCHE DUPUY DE LÔME (IRDL) <https://www.irdl.fr/>.
//
// Herezh++ is distributed under GPL 3 license ou ultérieure.
//
// Copyright (C) 1997-2021 Université Bretagne Sud (France)
// AUTHOR : Gérard Rio
// E-MAIL : gerardrio56@free.fr
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License,
// or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// For more information, please consult: <https://herezh.irdl.fr/>.
#include "MathUtil.h"
#ifndef MATHUTIL_H_deja_inclus
// minimum de deux doubles
#ifndef MISE_AU_POINT
inline
#endif
double MiN(double a,double b)
{ if (a > b)
return b;
else
return a;
};
// maximum de deux doubles
#ifndef MISE_AU_POINT
inline
#endif
double MaX(double a,double b)
{ if (a > b)
return a;
else
return b;
};
// minimum de deux entiers
#ifndef MISE_AU_POINT
inline
#endif
int MiN(int a,int b)
{ if (a > b)
return b;
else
return a;
};
// maximum de deux entiers
#ifndef MISE_AU_POINT
inline
#endif
int MaX(int a,int b)
{ if (a > b)
return a;
else
return b;
};
// minimum des valeurs absolues de deux doubles
#ifndef MISE_AU_POINT
inline
#endif
double DabsMiN(double a,double b)
{ if (Dabs(a) < Dabs(b)) {return Dabs(a);}
else {return Dabs(b);};
};
// maximum des valeurs absolues de deux doubles
#ifndef MISE_AU_POINT
inline
#endif
double DabsMaX(double a,double b)
{ if (Dabs(a) < Dabs(b)) {return Dabs(b);}
else {return Dabs(a);};
};
// maximum des valeurs absolues de 3 doubles
#ifndef MISE_AU_POINT
inline
#endif
double DabsMaX(double a,double b,double c)
{double A = Dabs(a);
double B = Dabs(b);
double C = Dabs(c);
if (A < B )
{if (B < C) {return C;}
else {return B;};
}
else
{if (A < C) {return C;}
else {return A;};
}
};
// minimum des valeurs absolues de deux entiers
#ifndef MISE_AU_POINT
inline
#endif
int DabsMiN(int a,int b)
{ if (Dabs(a) < Dabs(b)) {return Dabs(a);}
else {return Dabs(b);};
};
// maximum des valeurs absolues de deux entiers
#ifndef MISE_AU_POINT
inline
#endif
int DabsMaX(int a,int b)
{ if (Dabs(a) < Dabs(b)) {return Dabs(b);}
else {return Dabs(a);};
};
// maximum des valeurs absolu d'un tableau de n réels
#ifndef MISE_AU_POINT
inline
#endif
double DabsMaxiTab(double * tab, int n)
{ double maxi = Dabs(tab[0]);
for (int i=1; i<n;i++)
if (maxi < Dabs(tab[i])) maxi = Dabs(tab[i]);
return maxi;
};
// maximum des valeurs absolu d'un tableau de n entier relatifs
#ifndef MISE_AU_POINT
inline
#endif
int DabsMaxiTab(int * tab, int n)
{ int maxi = Dabs(tab[0]);
for (int i=1; i<n;i++)
if (maxi < Dabs(tab[i])) maxi = Dabs(tab[i]);
return maxi;
};
#endif