CORDIC_Rotate_APFX/sources/tb/cordic_tb.cpp
Camille Monière 9e21f49577
Fix CMakeLists and add a constexpr test
- ap_types should be correctly foundable now.
- A unit-test to check for constexpr rightness have been added.
2022-02-14 10:44:22 +01:00

326 lines
11 KiB
C++

#include "CCordicRotate/CCordicRotate.hpp"
#include "CCordicRotateHalfPiRom/CCordicRotateHalfPiRom.hpp"
#include <fstream>
#include <iostream>
#include <catch2/catch.hpp>
using namespace std;
using Catch::Matchers::Floating::WithinAbsMatcher;
typedef CCordicRotate<8, 14, 4, 17, 5, 19, 7, 12> cordic_legacy;
TEST_CASE("Adaptive CORDIC work as intended", "[!hide][WIP]") {
string input_fn = "../data/input.dat"; // _8_14_4_17_5_19_7_12
string output_fn = "../data/output.dat"; // _8_14_4_17_5_19_7_12
constexpr unsigned n_lines = 100000;
ap_fixed<17, 5> values_re_in[n_lines];
ap_fixed<17, 5> values_im_in[n_lines];
ap_fixed<14, 4> angles_in[n_lines];
ap_fixed<19, 7> values_re_out[n_lines];
ap_fixed<19, 7> values_im_out[n_lines];
double exp_re_out[n_lines];
double exp_im_out[n_lines];
ofstream FILE;
ifstream INPUT(input_fn);
ifstream RESULTS(output_fn);
// Init test vector
for (unsigned i = 0; i < n_lines; i++) {
double a, b, c;
INPUT >> a >> b >> c;
values_re_in[i] = a;
values_im_in[i] = b;
angles_in[i] = c;
RESULTS >> a >> b;
exp_re_out[i] = a;
exp_im_out[i] = b;
}
INPUT.close();
RESULTS.close();
// Save the results to a file
FILE.open("results.dat");
// Executing the encoder
for (unsigned iter = 0; iter < n_lines; iter++) {
// Execute
cordic_legacy::process(angles_in[iter],
values_re_in[iter], values_im_in[iter],
values_re_out[iter], values_im_out[iter]);
// Display the results
// cout << "Series " << iter;
// cout << " Outcome: ";
FILE << values_re_out[iter].to_float() << ", " << values_re_out[iter].to_float() << endl;
REQUIRE_THAT(values_re_out[iter].to_float(), WithinAbsMatcher(exp_re_out[iter], 0.079997558593750));
REQUIRE_THAT(values_im_out[iter].to_float(), WithinAbsMatcher(exp_im_out[iter], 0.079997558593750));
}
FILE.close();
// Compare the results file with the golden results
// int retval = 0;
// Return 0 if the test passed
}
typedef CCordicRotateRomHalfPi<16, 4, 6, 64> cordic_rom;
TEST_CASE("ROM-based Cordic works with C-Types", "[CORDIC]") {
SECTION("W:16 - I:4 - Stages:6 - q:64") {
static constexpr cordic_rom cordic {};
string input_fn = "../data/input.dat"; // _8_14_4_17_5_19_7_12
string output_fn = "../data/output.dat"; // _8_14_4_17_5_19_7_12
constexpr unsigned n_lines = 100000;
complex<double> values_in[n_lines];
complex<double> values_out[n_lines];
complex<double> results[n_lines];
ofstream FILE;
ifstream INPUT(input_fn);
// Init test vector
for (unsigned i = 0; i < n_lines; i++) {
double a, b, r;
INPUT >> a >> b >> r;
const complex<double> c {a, b};
values_in[i] = c;
constexpr double rotation = cordic_rom::rom_cordic.rotation;
constexpr double q = cordic_rom::rom_cordic.q;
const complex<double> e = exp(complex<double>(0., rotation / q * (i & 255)));
results[i] = c * e;
}
INPUT.close();
// Save the results to a file
FILE.open("results.dat");
constexpr double abs_margin = double(1 << cordic.Out_I) * 2. / 100.;
// Executing the encoder
for (unsigned iter = 0; iter < n_lines; iter++) {
// Execute
values_out[iter] = cordic.cordic(values_in[iter], (iter & 255));
// Display the results
// cout << "Series " << iter;
// cout << " Outcome: ";
FILE << values_out[iter].real() << " " << values_out[iter].imag() << " " << results[iter].real() << " " << results[iter].imag() << endl;
REQUIRE_THAT(values_out[iter].real(), WithinAbsMatcher(results[iter].real(), abs_margin));
REQUIRE_THAT(values_out[iter].imag(), WithinAbsMatcher(results[iter].imag(), abs_margin));
}
FILE.close();
// Compare the results file with the golden results
// int retval = 0;
// Return 0 if the test passed
}
}
TEST_CASE("ROM-based Cordic works with AP-Types", "[CORDIC]") {
constexpr unsigned n_lines = 100000;
SECTION("W:16 - I:4 - Stages:6 - q:64") {
static constexpr cordic_rom cordic {};
string input_fn = "../data/input.dat";
constexpr double rotation = cordic_rom::rom_cordic.rotation;
constexpr double q = cordic_rom::rom_cordic.q;
constexpr uint64_t cnt_mask = 0xFF; // Value dependant of the way the ROM is initialized
constexpr unsigned Out_W = cordic_rom::Out_W;
constexpr unsigned In_W = cordic_rom::In_W;
ap_int<In_W> values_re_in[n_lines];
ap_int<In_W> values_im_in[n_lines];
ap_int<Out_W> values_re_out[n_lines];
ap_int<Out_W> values_im_out[n_lines];
double results_re[n_lines];
double results_im[n_lines];
ofstream out_stream;
ifstream INPUT(input_fn);
// Init test vector
for (unsigned i = 0; i < n_lines; i++) {
double a, b, r;
INPUT >> a >> b >> r;
const complex<double> c {a, b};
values_re_in[i] = int64_t(a * double(cordic_rom::in_scale_factor));
values_im_in[i] = int64_t(b * double(cordic_rom::in_scale_factor));
const complex<double> e = c * exp(complex<double>(0., rotation / q * (i & cnt_mask)));
results_re[i] = e.real();
results_im[i] = e.imag();
}
INPUT.close();
// Save the results to a file
out_stream.open("results_ap.dat");
// FILE * romf = fopen("rom.dat", "w");
constexpr double abs_margin = double(1 << cordic.Out_I) * 2. / 100.;
// Executing the encoder
for (unsigned iter = 0; iter < n_lines; iter++) {
// Execute
const uint8_t counter = uint8_t(iter & cnt_mask);
// if (iter < cnt_mask + 1)
// fprintf(romf, "%03d\n", (uint16_t) cordic.rom_cordic.rom[counter]);
cordic.cordic(
values_re_in[iter], values_im_in[iter],
counter,
values_re_out[iter], values_im_out[iter]);
// Display the results
// cout << "Series " << iter;
// cout << " Outcome: ";
out_stream << values_re_out[iter].to_int64() << " " << values_im_out[iter].to_int64() << " " << results_re[iter] << " " << results_im[iter] << endl;
REQUIRE_THAT(values_re_out[iter].to_double() * 5. / 8. / cordic_rom::out_scale_factor, WithinAbsMatcher(results_re[iter], abs_margin));
REQUIRE_THAT(values_im_out[iter].to_double() * 5. / 8. / cordic_rom::out_scale_factor, WithinAbsMatcher(results_im[iter], abs_margin));
}
out_stream.close();
// fclose(romf);
// Compare the results file with the golden results
// int retval = 0;
// Return 0 if the test passed
}
SECTION("W:16 - I:4 - Stages:6 - q:64 - internal scaling") {
// typedef CCordicRotateRomHalfPi<16, 4, 6, 64> cordic_rom;
static constexpr cordic_rom cordic {};
string input_fn = "../data/input.dat";
constexpr double rotation = cordic_rom::rom_cordic.rotation;
constexpr double q = cordic_rom::rom_cordic.q;
constexpr uint64_t cnt_mask = 0xFF; // Value dependant of the way the ROM is initialized
constexpr unsigned Out_W = cordic_rom::Out_W;
constexpr unsigned In_W = cordic_rom::In_W;
ap_int<In_W> values_re_in[n_lines];
ap_int<In_W> values_im_in[n_lines];
ap_int<Out_W> values_re_out[n_lines];
ap_int<Out_W> values_im_out[n_lines];
double results_re[n_lines];
double results_im[n_lines];
ofstream out_stream;
ifstream INPUT(input_fn);
// Init test vector
for (unsigned i = 0; i < n_lines; i++) {
double a, b, r;
INPUT >> a >> b >> r;
const complex<double> c {a, b};
values_re_in[i] = int64_t(a * double(cordic_rom::in_scale_factor));
values_im_in[i] = int64_t(b * double(cordic_rom::in_scale_factor));
const complex<double> e = c * exp(complex<double>(0., rotation / q * (i & cnt_mask)));
results_re[i] = e.real();
results_im[i] = e.imag();
}
INPUT.close();
// Save the results to a file
out_stream.open("results_ap.dat");
// FILE * romf = fopen("rom.dat", "w");
constexpr double abs_margin = double(1 << cordic.Out_I) * 2. / 100.;
// Executing the encoder
for (unsigned iter = 0; iter < n_lines; iter++) {
// Execute
const uint8_t counter = uint8_t(iter & cnt_mask);
// if (iter < cnt_mask + 1)
// fprintf(romf, "%03d\n", (uint16_t) cordic.rom_cordic.rom[counter]);
cordic.cordic(
values_re_in[iter], values_im_in[iter],
counter,
values_re_out[iter], values_im_out[iter]);
// Display the results
// cout << "Series " << iter;
// cout << " Outcome: ";
out_stream << values_re_out[iter].to_int64() << " " << values_im_out[iter].to_int64() << " " << results_re[iter] << " " << results_im[iter] << endl;
REQUIRE_THAT(cordic_rom::scale_cordic<Out_W>(values_re_out[iter]).to_double() / cordic_rom::out_scale_factor,
WithinAbsMatcher(results_re[iter],
abs_margin));
REQUIRE_THAT(cordic_rom::scale_cordic<Out_W>(values_im_out[iter]).to_double() / cordic_rom::out_scale_factor,
WithinAbsMatcher(results_im[iter],
abs_margin));
}
out_stream.close();
// fclose(romf);
// Compare the results file with the golden results
// int retval = 0;
// Return 0 if the test passed
}
}
TEST_CASE("ROM-based Cordic constexpr are evaluated during compilation.", "[CORDIC]") {
constexpr unsigned n_lines = 100000;
SECTION("W:16 - I:4 - Stages:6 - q:64 - C-Types") {
static constexpr cordic_rom cordic {};
constexpr double rotation = cordic_rom::rom_cordic.rotation;
constexpr double q = cordic_rom::rom_cordic.q;
constexpr uint64_t max_length = cordic_rom::rom_cordic.max_length;
constexpr complex<int64_t> value_in = (1U << 12) * 97;
constexpr uint8_t angle = 169;
double results_re[n_lines];
double results_im[n_lines];
constexpr complex<int64_t> res = cordic.cordic(value_in, angle);
static_assert(res == cordic.cordic(value_in, angle), "Test");
REQUIRE_FALSE(res == cordic.cordic(complex<int64_t>(1, 0), angle));
REQUIRE(res == cordic.cordic(value_in, angle));
}
}