#include "CCordicRotate/CCordicRotate.hpp" #include "CCordicRotateHalfPiRom/CCordicRotateHalfPiRom.hpp" #include #include #include using namespace std; using Catch::Matchers::Floating::WithinAbsMatcher; typedef CCordicRotate<8, 14, 4, 17, 5, 19, 7, 12> cordic_legacy; TEST_CASE("Adaptive CORDIC work as intended", "[!hide][WIP]") { string input_fn = "../data/input.dat"; // _8_14_4_17_5_19_7_12 string output_fn = "../data/output.dat"; // _8_14_4_17_5_19_7_12 constexpr unsigned n_lines = 100000; ap_fixed<17, 5> values_re_in[n_lines]; ap_fixed<17, 5> values_im_in[n_lines]; ap_fixed<14, 4> angles_in[n_lines]; ap_fixed<19, 7> values_re_out[n_lines]; ap_fixed<19, 7> values_im_out[n_lines]; double exp_re_out[n_lines]; double exp_im_out[n_lines]; ofstream FILE; ifstream INPUT(input_fn); ifstream RESULTS(output_fn); // Init test vector for (unsigned i = 0; i < n_lines; i++) { double a, b, c; INPUT >> a >> b >> c; values_re_in[i] = a; values_im_in[i] = b; angles_in[i] = c; RESULTS >> a >> b; exp_re_out[i] = a; exp_im_out[i] = b; } INPUT.close(); RESULTS.close(); // Save the results to a file FILE.open("results.dat"); // Executing the encoder for (unsigned iter = 0; iter < n_lines; iter++) { // Execute cordic_legacy::process(angles_in[iter], values_re_in[iter], values_im_in[iter], values_re_out[iter], values_im_out[iter]); // Display the results // cout << "Series " << iter; // cout << " Outcome: "; FILE << values_re_out[iter].to_float() << ", " << values_re_out[iter].to_float() << endl; REQUIRE_THAT(values_re_out[iter].to_float(), WithinAbsMatcher(exp_re_out[iter], 0.079997558593750)); REQUIRE_THAT(values_im_out[iter].to_float(), WithinAbsMatcher(exp_im_out[iter], 0.079997558593750)); } FILE.close(); // Compare the results file with the golden results // int retval = 0; // Return 0 if the test passed } typedef CCordicRotateRomHalfPi<16, 4, 6, 64> cordic_rom; TEST_CASE("ROM-based Cordic works with C-Types", "[CORDIC]") { SECTION("W:16 - I:4 - Stages:6 - q:64") { static constexpr cordic_rom cordic {}; string input_fn = "../data/input.dat"; // _8_14_4_17_5_19_7_12 string output_fn = "../data/output.dat"; // _8_14_4_17_5_19_7_12 constexpr unsigned n_lines = 100000; complex values_in[n_lines]; complex values_out[n_lines]; complex results[n_lines]; ofstream FILE; ifstream INPUT(input_fn); // Init test vector for (unsigned i = 0; i < n_lines; i++) { double a, b, r; INPUT >> a >> b >> r; const complex c {a, b}; values_in[i] = c; constexpr double rotation = cordic_rom::rom_cordic.rotation; constexpr double q = cordic_rom::rom_cordic.q; const complex e = exp(complex(0., rotation / q * (i & 255))); results[i] = c * e; } INPUT.close(); // Save the results to a file FILE.open("results.dat"); constexpr double abs_margin = double(1 << cordic.Out_I) * 2. / 100.; // Executing the encoder for (unsigned iter = 0; iter < n_lines; iter++) { // Execute values_out[iter] = cordic.cordic(values_in[iter], (iter & 255)); // Display the results // cout << "Series " << iter; // cout << " Outcome: "; FILE << values_out[iter].real() << " " << values_out[iter].imag() << " " << results[iter].real() << " " << results[iter].imag() << endl; REQUIRE_THAT(values_out[iter].real(), WithinAbsMatcher(results[iter].real(), abs_margin)); REQUIRE_THAT(values_out[iter].imag(), WithinAbsMatcher(results[iter].imag(), abs_margin)); } FILE.close(); // Compare the results file with the golden results // int retval = 0; // Return 0 if the test passed } } TEST_CASE("ROM-based Cordic works with AP-Types", "[CORDIC]") { constexpr unsigned n_lines = 100000; SECTION("W:16 - I:4 - Stages:6 - q:64") { static constexpr cordic_rom cordic {}; string input_fn = "../data/input.dat"; constexpr double rotation = cordic_rom::rom_cordic.rotation; constexpr double q = cordic_rom::rom_cordic.q; constexpr uint64_t cnt_mask = 0xFF; // Value dependant of the way the ROM is initialized constexpr unsigned Out_W = cordic_rom::Out_W; constexpr unsigned In_W = cordic_rom::In_W; ap_int values_re_in[n_lines]; ap_int values_im_in[n_lines]; ap_int values_re_out[n_lines]; ap_int values_im_out[n_lines]; double results_re[n_lines]; double results_im[n_lines]; ofstream out_stream; ifstream INPUT(input_fn); // Init test vector for (unsigned i = 0; i < n_lines; i++) { double a, b, r; INPUT >> a >> b >> r; const complex c {a, b}; values_re_in[i] = int64_t(a * double(cordic_rom::in_scale_factor)); values_im_in[i] = int64_t(b * double(cordic_rom::in_scale_factor)); const complex e = c * exp(complex(0., rotation / q * (i & cnt_mask))); results_re[i] = e.real(); results_im[i] = e.imag(); } INPUT.close(); // Save the results to a file out_stream.open("results_ap.dat"); // FILE * romf = fopen("rom.dat", "w"); constexpr double abs_margin = double(1 << cordic.Out_I) * 2. / 100.; // Executing the encoder for (unsigned iter = 0; iter < n_lines; iter++) { // Execute const uint8_t counter = uint8_t(iter & cnt_mask); // if (iter < cnt_mask + 1) // fprintf(romf, "%03d\n", (uint16_t) cordic.rom_cordic.rom[counter]); cordic.cordic( values_re_in[iter], values_im_in[iter], counter, values_re_out[iter], values_im_out[iter]); // Display the results // cout << "Series " << iter; // cout << " Outcome: "; out_stream << values_re_out[iter].to_int64() << " " << values_im_out[iter].to_int64() << " " << results_re[iter] << " " << results_im[iter] << endl; REQUIRE_THAT(values_re_out[iter].to_double() * 5. / 8. / cordic_rom::out_scale_factor, WithinAbsMatcher(results_re[iter], abs_margin)); REQUIRE_THAT(values_im_out[iter].to_double() * 5. / 8. / cordic_rom::out_scale_factor, WithinAbsMatcher(results_im[iter], abs_margin)); } out_stream.close(); // fclose(romf); // Compare the results file with the golden results // int retval = 0; // Return 0 if the test passed } SECTION("W:16 - I:4 - Stages:6 - q:64 - internal scaling") { // typedef CCordicRotateRomHalfPi<16, 4, 6, 64> cordic_rom; static constexpr cordic_rom cordic {}; string input_fn = "../data/input.dat"; constexpr double rotation = cordic_rom::rom_cordic.rotation; constexpr double q = cordic_rom::rom_cordic.q; constexpr uint64_t cnt_mask = 0xFF; // Value dependant of the way the ROM is initialized constexpr unsigned Out_W = cordic_rom::Out_W; constexpr unsigned In_W = cordic_rom::In_W; ap_int values_re_in[n_lines]; ap_int values_im_in[n_lines]; ap_int values_re_out[n_lines]; ap_int values_im_out[n_lines]; double results_re[n_lines]; double results_im[n_lines]; ofstream out_stream; ifstream INPUT(input_fn); // Init test vector for (unsigned i = 0; i < n_lines; i++) { double a, b, r; INPUT >> a >> b >> r; const complex c {a, b}; values_re_in[i] = int64_t(a * double(cordic_rom::in_scale_factor)); values_im_in[i] = int64_t(b * double(cordic_rom::in_scale_factor)); const complex e = c * exp(complex(0., rotation / q * (i & cnt_mask))); results_re[i] = e.real(); results_im[i] = e.imag(); } INPUT.close(); // Save the results to a file out_stream.open("results_ap.dat"); // FILE * romf = fopen("rom.dat", "w"); constexpr double abs_margin = double(1 << cordic.Out_I) * 2. / 100.; // Executing the encoder for (unsigned iter = 0; iter < n_lines; iter++) { // Execute const uint8_t counter = uint8_t(iter & cnt_mask); // if (iter < cnt_mask + 1) // fprintf(romf, "%03d\n", (uint16_t) cordic.rom_cordic.rom[counter]); cordic.cordic( values_re_in[iter], values_im_in[iter], counter, values_re_out[iter], values_im_out[iter]); // Display the results // cout << "Series " << iter; // cout << " Outcome: "; out_stream << values_re_out[iter].to_int64() << " " << values_im_out[iter].to_int64() << " " << results_re[iter] << " " << results_im[iter] << endl; REQUIRE_THAT(cordic_rom::scale_cordic(values_re_out[iter]).to_double() / cordic_rom::out_scale_factor, WithinAbsMatcher(results_re[iter], abs_margin)); REQUIRE_THAT(cordic_rom::scale_cordic(values_im_out[iter]).to_double() / cordic_rom::out_scale_factor, WithinAbsMatcher(results_im[iter], abs_margin)); } out_stream.close(); // fclose(romf); // Compare the results file with the golden results // int retval = 0; // Return 0 if the test passed } }