/* * * Copyright 2022 Camille "DrasLorus" Monière. * * This file is part of CORDIC_Rotate_APFX. * * This program is free software: you can redistribute it and/or modify it under the terms of the GNU * Lesser General Public License as published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License along with this program. * If not, see . * */ #include "CCordicRotateRom/CCordicRotateRom_@ROM_TYPE@_@CORDIC_W@_@CORDIC_STAGES@_@CORDIC_Q@_@CORDIC_DIVIDER@.hpp" #include #include #include using namespace std; using Catch::Matchers::Floating::WithinAbsMatcher; typedef CCordicRotateRom<4, @ROM_TYPE@, @CORDIC_W@, @CORDIC_STAGES@, @CORDIC_Q@, @CORDIC_DIVIDER@> cordic_rom; #if defined(SOFTWARE) TEST_CASE("ROM-based Cordic (TPL @ROM_TYPE@, @CORDIC_W@, @CORDIC_STAGES@, @CORDIC_Q@, @CORDIC_DIVIDER@) works with C-Types", "[CORDIC]") { SECTION("W:@CORDIC_W@ - I:4 - Stages:@CORDIC_STAGES@ - q:@CORDIC_Q@ - div:@CORDIC_DIVIDER@") { static constexpr cordic_rom cordic {}; string input_fn = "../data/input.dat"; constexpr unsigned n_lines = 100000; vector> values_in(n_lines); vector> values_out(n_lines); vector> results(n_lines); ifstream INPUT(input_fn); // Init test vector for (unsigned i = 0; i < n_lines; i++) { double a, b, r; INPUT >> a >> b >> r; const complex c {a, b}; values_in[i] = c; constexpr double rotation = cordic_rom::rotation; constexpr double q = cordic_rom::q; const complex e = exp(complex(0., rotation / q * (i & 255))); results[i] = c * e; } INPUT.close(); constexpr double abs_margin = double(1 << cordic.Out_I) * 2. / 100.; // Executing the CORDIC for (unsigned iter = 0; iter < n_lines; iter++) { // Execute values_out[iter] = cordic_rom::cordic(values_in[iter], (iter & 255)); REQUIRE_THAT(values_out[iter].real(), WithinAbsMatcher(results[iter].real(), abs_margin)); REQUIRE_THAT(values_out[iter].imag(), WithinAbsMatcher(results[iter].imag(), abs_margin)); } } } #endif TEST_CASE("ROM-based Cordic (TPL @ROM_TYPE@, @CORDIC_W@, @CORDIC_STAGES@, @CORDIC_Q@, @CORDIC_DIVIDER@) works with AP-Types", "[CORDIC]") { constexpr unsigned n_lines = 100000; SECTION("W:@CORDIC_W@ - I:4 - Stages:@CORDIC_STAGES@ - q:@CORDIC_Q@ - div:@CORDIC_DIVIDER@") { static constexpr cordic_rom cordic {}; string input_fn = "../data/input.dat"; constexpr double rotation = cordic_rom::rotation; constexpr double q = cordic_rom::q; constexpr uint64_t cnt_mask = 0xFF; // Value dependant of the way the ROM is initialized constexpr unsigned Out_W = cordic_rom::Out_W; constexpr unsigned In_W = cordic_rom::In_W; vector> values_re_in(n_lines); vector> values_im_in(n_lines); vector> values_re_out(n_lines); vector> values_im_out(n_lines); vector results_re(n_lines); vector results_im(n_lines); FILE * INPUT = fopen(input_fn.c_str(), "r"); // Init test vector for (unsigned i = 0; i < n_lines; i++) { double a, b, r; fscanf(INPUT, "%lf,%lf,%lf\n", &a, &b, &r); const complex c {a, b}; values_re_in[i] = int64_t(a * double(cordic_rom::in_scale_factor)); values_im_in[i] = int64_t(b * double(cordic_rom::in_scale_factor)); const complex e = c * exp(complex(0., rotation / q * (i & cnt_mask))); results_re[i] = e.real(); results_im[i] = e.imag(); } fclose(INPUT); constexpr double abs_margin = double(1 << cordic.Out_I) * 2. / 100.; // Executing the CORDIC for (unsigned iter = 0; iter < n_lines; iter++) { // Execute const uint8_t counter = uint8_t(iter & cnt_mask); cordic_rom::cordic( values_re_in[iter], values_im_in[iter], counter, values_re_out[iter], values_im_out[iter]); REQUIRE_THAT(values_re_out[iter].to_double() * 5. / 8. / cordic_rom::out_scale_factor, WithinAbsMatcher(results_re[iter], abs_margin)); REQUIRE_THAT(values_im_out[iter].to_double() * 5. / 8. / cordic_rom::out_scale_factor, WithinAbsMatcher(results_im[iter], abs_margin)); } } SECTION("W:@CORDIC_W@ - I:4 - Stages:@CORDIC_STAGES@ - q:@CORDIC_Q@ - div:@CORDIC_DIVIDER@ - internal scaling") { static constexpr cordic_rom cordic {}; string input_fn = "../data/input.dat"; constexpr double rotation = cordic_rom::rotation; constexpr double q = cordic_rom::q; constexpr uint64_t cnt_mask = 0xFF; // Value dependant of the way the ROM is initialized constexpr unsigned Out_W = cordic_rom::Out_W; constexpr unsigned In_W = cordic_rom::In_W; vector> values_re_in(n_lines); vector> values_im_in(n_lines); vector> values_re_out(n_lines); vector> values_im_out(n_lines); vector results_re(n_lines); vector results_im(n_lines); FILE * INPUT = fopen(input_fn.c_str(), "r"); // Init test vector for (unsigned i = 0; i < n_lines; i++) { double a, b, r; fscanf(INPUT, "%lf,%lf,%lf\n", &a, &b, &r); const complex c {a, b}; values_re_in[i] = int64_t(a * double(cordic_rom::in_scale_factor)); values_im_in[i] = int64_t(b * double(cordic_rom::in_scale_factor)); const complex e = c * exp(complex(0., rotation / q * (i & cnt_mask))); results_re[i] = e.real(); results_im[i] = e.imag(); } fclose(INPUT); constexpr double abs_margin = double(1 << cordic.Out_I) * 2. / 100.; // Executing the CORDIC for (unsigned iter = 0; iter < n_lines; iter++) { // Execute const uint8_t counter = uint8_t(iter & cnt_mask); cordic_rom::cordic( values_re_in[iter], values_im_in[iter], counter, values_re_out[iter], values_im_out[iter]); REQUIRE_THAT(cordic_rom::scale_cordic(values_re_out[iter]).to_double() / cordic_rom::out_scale_factor, WithinAbsMatcher(results_re[iter], abs_margin)); REQUIRE_THAT(cordic_rom::scale_cordic(values_im_out[iter]).to_double() / cordic_rom::out_scale_factor, WithinAbsMatcher(results_im[iter], abs_margin)); } } } #if defined(SOFTWARE) TEST_CASE("ROM-based Cordic (TPL @ROM_TYPE@, @CORDIC_W@, @CORDIC_STAGES@, @CORDIC_Q@, @CORDIC_DIVIDER@) constexpr are evaluated during compilation.", "[CORDIC]") { SECTION("W:@CORDIC_W@ - I:4 - Stages:@CORDIC_STAGES@ - q:@CORDIC_Q@ - div:@CORDIC_DIVIDER@ - C-Types") { constexpr complex value_in = (1U << 12) * 97; constexpr uint8_t angle = 169; constexpr complex res1 = cordic_rom::cordic(value_in, angle); constexpr complex res2 = cordic_rom::cordic(value_in, angle); static_assert(res1 == res2, "Test"); REQUIRE_FALSE(res1 == cordic_rom::cordic(complex(1, 0), angle)); REQUIRE(res1 == cordic_rom::cordic(value_in, angle)); } } #endif