/* * * Copyright 2022 Camille "DrasLorus" Monière. * * This file is part of CORDIC_Rotate_APFX. * * This program is free software: you can redistribute it and/or modify it under the terms of the GNU * Lesser General Public License as published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License along with this program. * If not, see . * */ #ifndef C_CORDIC_ROTATE_CONSTEXPR_HPP #define C_CORDIC_ROTATE_CONSTEXPR_HPP #include #include #include #include #include #include #include #include "RomGeneratorConst/RomGeneratorConst.hpp" namespace rcr = rom_cordic_rotate; template class CCordicRotateConstexpr { static_assert(TIn_W > 0, "Inputs can't be on zero bits."); static_assert(Tnb_stages < 8, "7 stages of CORDIC is the maximum supported."); static_assert(Tnb_stages > 1, "2 stages of CORDIC is the minimum."); static_assert(rcr::is_pow_2(), "divider must be a power of 2."); public: // ``` GNU Octave // kn_values(X) = prod(1 ./ abs(1 + 1j * 2.^ (-(0:X)))) // ``` static constexpr double kn_values[7] = { 0.70710678118655, 0.632455532033680, 0.613571991077900, 0.608833912517750, 0.607648256256170, 0.607351770141300, 0.607277644093530}; static constexpr const CRomGeneratorConst & rom_cordic {}; static constexpr unsigned In_W = TIn_W; static constexpr unsigned In_I = TIn_I; static constexpr unsigned Out_W = In_W + 2; static constexpr unsigned Out_I = In_I + 2; static constexpr unsigned nb_stages = Tnb_stages; static constexpr unsigned kn_i = unsigned(kn_values[nb_stages - 1] * double(1U << 4)); // 4 bits are enough static constexpr unsigned in_scale_factor = unsigned(1U << (In_W - In_I)); static constexpr unsigned out_scale_factor = unsigned(1U << (Out_W - Out_I)); static constexpr double rotation = CRomGeneratorConst::rotation; static constexpr unsigned addr_length = CRomGeneratorConst::addr_length; static constexpr int64_t scale_cordic(int64_t in) { return in * kn_i / 16U; } static constexpr double scale_cordic(double in) { return in * kn_values[nb_stages - 1]; } #if !defined(__SYNTHESIS__) && defined(SOFTWARE) static constexpr std::complex cordic(std::complex x_in, uint64_t counter) { int64_t A = x_in.real(); int64_t B = x_in.imag(); const uint8_t R = rom_cordic.rom[counter]; uint8_t mask = 0x01; if ((R & mask) == mask) { A = -A; B = -B; } for (uint8_t u = 1; u < nb_stages + 1; u++) { mask = mask << 1; const int64_t Ri = (R & mask) == mask ? 1 : -1; const int64_t I = A + Ri * (B / int64_t(1U << (u - 1))); B = B - Ri * (A / int64_t(1U << (u - 1))); A = I; } return {(A), (B)}; } static constexpr std::complex cordic(std::complex x_in, uint64_t counter) { const std::complex fx_x_in(int64_t(x_in.real() * double(in_scale_factor)), int64_t(x_in.imag() * double(in_scale_factor))); const std::complex fx_out = cordic(fx_x_in, counter); return {scale_cordic(double(fx_out.real())) / double(out_scale_factor), scale_cordic(double(fx_out.imag())) / double(out_scale_factor)}; } #endif static ap_int scale_cordic(const ap_int & in) { const ap_int tmp = in * ap_uint<4>(kn_i); return ap_int(tmp >> 4); } static void cordic(const ap_int & re_in, const ap_int & im_in, const ap_uint & counter, ap_int & re_out, ap_int & im_out) { const ap_uint R = rom_cordic.rom[counter]; ap_int A = bool(R[0]) ? ap_int(-re_in) : re_in; ap_int B = bool(R[0]) ? ap_int(-im_in) : im_in; for (uint8_t u = 1; u < nb_stages + 1; u++) { // nb_stages stages const bool Ri = bool(R[u]); // Results in (X / 2^(u - 1)), meaning only the // Out_W - u LSBs are meaninfull in shifted_X // Can't use range access since 11111111 (-1) would become 00001111 (15). // Would be possible if the loop is manually unrolled, to predict bitsize, // thus directly put 1111 into 4 bits (so still -1). const ap_int shifted_A = A >> (u - 1); // A(Out_W - 1, u - 1); const ap_int shifted_B = B >> (u - 1); // B(Out_W - 1, u - 1); const ap_int arc_step_A = Ri ? ap_int(-shifted_A) : shifted_A; const ap_int arc_step_B = Ri ? shifted_B : ap_int(-shifted_B); const ap_int I = A + arc_step_B; B = B + arc_step_A; A = I; } re_out = A; im_out = B; } constexpr CCordicRotateConstexpr() = default; }; #if 0 template <> inline void CCordicRotateConstexpr<16, 4, 6, 64>::cordic( const ap_int<16> & re_in, const ap_int<16> & im_in, const ap_uint<8> & counter, ap_int & re_out, ap_int & im_out) const { const ap_uint<6 + 1> R = (rom_cordic.rom[counter.to_uint()] >> (7 - 6)); ap_int A = bool(R[6]) ? ap_int<16>(-re_in) : re_in; ap_int B = bool(R[6]) ? ap_int<16>(-im_in) : im_in; for (uint8_t u = 1; u < 6 + 1; u++) { // 6 stages const bool Ri = bool(R[6 - u]); // Results in (X / 2^(u - 1)), meaning only the // Out_W - u LSBs are meaninfull in shifted_X // Can't use range access since 11111111 (-1) would become 00001111 (15). // Would be possible if the loop is manually unrolled, to predict bitsize, // thus directly put 1111 into 4 bits (so still -1). const ap_int shifted_A = A >> (u - 1); // A(Out_W - 1, u - 1); const ap_int shifted_B = B >> (u - 1); // B(Out_W - 1, u - 1); const ap_int arc_step_A = Ri ? ap_int(-shifted_A) : shifted_A; const ap_int arc_step_B = Ri ? shifted_B : ap_int(-shifted_B); const auto I = A + arc_step_B; B = B + arc_step_A; A = I; } re_out = A; im_out = B; } #endif #endif // C_CORDIC_ROTATE_CONSTEXPR_HPP