Compare commits

..

No commits in common. "dev" and "main" have entirely different histories.
dev ... main

37 changed files with 1387 additions and 933 deletions

9
.gitignore vendored Executable file → Normal file
View file

@ -1,8 +1,3 @@
# Python
**/__pycache__
**/*.egg-info **/*.egg-info
/dist
# Example **/__pycache__/
**/example/*.jpg
**/example/*.png
**/example/*.svg

28
README.md Executable file → Normal file
View file

@ -0,0 +1,28 @@
## Installation
```sh
git clone pyskyline
cd pyskyline
pip install --user -e .
```
## Demo
```sh
cd demo
python demo.py
```
<div align="center">
<img src="images/fov.jpg" alt="simulated field of view" width="250"/>
**Fig.1** Simulated field of view for drone (blue dot).
</div>
<div align="center">
<img src="images/heatmap.svg" alt="Computed heat map" width="450"/>
**Fig.2** Computed heat map in fourier domain.
</div>

54
demo/demo.py Normal file
View file

@ -0,0 +1,54 @@
import matplotlib.pyplot as plt
import numpy as np
import cv2 as cv
import os
import pyskyline
import pyskyline.localization
FILE = 'terrain'
SIZE = 256
X = SIZE//2
Y = SIZE//2+80
if __name__ == '__main__':
if os.path.isfile(f'{FILE}_{SIZE}.npz'):
print("Save detected, loading ...")
terrain = pyskyline.Terrain.load(f'{FILE}_{SIZE}')
else:
print("No save detected, generating new terrain ...")
terrain = pyskyline.Terrain.generate(size=SIZE)
terrain.compute_all_skylines()
terrain.save(f'{FILE}_{SIZE}')
print(f"Done, terrain saved as {FILE}_{SIZE}.npz")
# Output elevation map
cv.imwrite('elevation_map.jpg', terrain.dem.elevation)
# Output color map
cv.imwrite('color_map.jpg', terrain.dem.color)
# Ouput field of view visualization
cv.imwrite('fov.jpg', terrain.compute_fov(X, Y))
# Ouput skyline
skyline = terrain.compute_skyline(X, Y)
plt.figure()
plt.grid(False)
plt.plot(np.arange(-180,180,360/256),skyline)
plt.title('Skyline')
plt.savefig('skyline.svg')
# Generate heatmap
skyline = np.roll(skyline, 8) # Add heading error
skyline += np.random.normal(0,0.5, 256) # Add random noise
mosse_correlation = pyskyline.MosseCorrelation(terrain, skyline)
scoremap = mosse_correlation.generate_scoremap()
plt.figure()
plt.grid(False)
fig = plt.imshow(scoremap)
plt.title('Score map')
plt.colorbar(fig)
plt.savefig('scoremap.svg')

134
demo/mosse_viz.py Normal file
View file

@ -0,0 +1,134 @@
import numpy as np
import scipy.signal as signal
from scipy.fftpack import fft, fftshift, ifft
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
N = 256
def gaussian_filter1d(size,sigma):
filter_range = np.linspace(-int(size/2),int(size/2),size)
gaussian_filter = [1 / (sigma * np.sqrt(2*np.pi)) * np.exp(-x**2/(2*sigma**2)) for x in filter_range]
return gaussian_filter
def generate_signal(N:int) -> np.ndarray:
x = np.arange(1, N)
y = np.zeros((N))
for i in range(len(x)):
y[i] = np.random.normal(scale=1) + (y[i-1] if i > 1 else 0)
return np.convolve(y,gaussian_filter1d(N,1),'same')
if __name__ == '__main__':
np.random.seed(42)
f_full = generate_signal(2048)
x = np.arange(-180,180,360/N)
f = f_full[1024:1024+N]
h = f_full[1024:1024+N]
g = signal.gaussian(N, std=10,sym=True)
F = fft(f)
F_ = np.conjugate(F)
G = fft(g)
K_ = (G*F_)/(F*F_)
H = fft(h)
r = ifft(H*K_)
# ==========================================
fig, (ax1, ax2, ax3, ax4, ax5, ax6, ax7) = plt.subplots(7, 1, gridspec_kw={'height_ratios':[4,4,4,1,1,1,1]})
ax1.set_title('Terrain')
plt_f, = ax1.plot(x,f)
plt_h, = ax1.plot(x,h)
ax2.set_title('MOSSE response signal')
ax2.set_ylim([0, 1.2])
line_r = ax2.axvline(x=-N//2+np.argmax(abs(r)), color='r')
plt_r, = ax2.plot(x,abs(r))
plt_r2, = ax2.plot(x,abs(r))
ax3.set_title('Gaussian')
plt_g, = ax3.plot(x,g)
ax1.set_xlim([-180,180])
ax2.set_xlim([-180,180])
ax3.set_xlim([-180,180])
slider1 = Slider(ax4, 'sigma', 0.3, 10, valinit=0.1)
slider2 = Slider(ax5, 'shift', -N//2 , N//2, valinit=0, valstep=1)
slider3 = Slider(ax6, 'seed', 0 , 50, valinit=0, valstep=1)
slider4 = Slider(ax7, 'N', 128 , 1024, valinit=256, valstep=8)
sigma = 0.3
shift = 0
def update():
# K_ = (G*F_)/(F*F_)
window = np.ones((N)) #signal.windows.hamming(N)
H = fft(h*window)
F = fft(f*window)
R = H*G/F
r = ifft(R)
s = np.argmax(abs(r))
r2 = np.copy(r)
r2[s-5:s+5] = 0
plt_g.set_data(x,g)
plt_r.set_data(x,abs(r))
plt_r2.set_data(x,abs(r2))
plt_h.set_data(x,h)
plt_f.set_data(x,f)
ax1.set_ylim([min(np.min(h),np.min(f))-1, max(np.max(h),np.max(f))+1])
ax2.set_ylim([0, np.max(r)+0.2])
line_r.set_xdata(round((np.argmax(abs(r))/N-0.5)*360))
fig.canvas.draw_idle()
def update_sigma(val):
global g, G, sigma, N
sigma = val
g = signal.gaussian(N, std=sigma,sym=True)
G = fft(g)
update()
def update_shift(val):
global shift, H, h
shift = -val
h = f_full[1024+round(shift*(N/360)):1024+N+round(shift*(N/360))]
noise = np.random.normal(0,0.5, N)
h = h+noise
update()
def update_seed(val):
global f_full, f, h, F, H, F_, shift
np.random.seed(val)
f_full = generate_signal(2048)
f = f_full[1024:1024+N]
h = f_full[1024+round(shift*(N/360)):1024+N+round(shift*(N/360))]
noise = np.random.normal(0,0.5, N)
h = h+noise
update()
def update_n(val):
global g, G, N, f_full, f, h, F, H, F_, shift, x, sigma, slider2
N = val
x = np.arange(-180,180,360/N)
g = signal.gaussian(N, std=sigma,sym=True)
G = fft(g)
f = f_full[1024:1024+N]
h = f_full[1024+shift:1024+N+shift]
noise = np.random.normal(0,0.5, N)
h = h+noise
update()
slider1.on_changed(update_sigma)
slider2.on_changed(update_shift)
slider3.on_changed(update_seed)
slider4.on_changed(update_n)
plt.subplots_adjust(hspace=0.5)
plt.show()

1
docs/.gitignore vendored
View file

@ -1 +0,0 @@
**/build

View file

@ -1,20 +0,0 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = source
BUILDDIR = build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

View file

@ -1,35 +0,0 @@
@ECHO OFF
pushd %~dp0
REM Command file for Sphinx documentation
if "%SPHINXBUILD%" == "" (
set SPHINXBUILD=sphinx-build
)
set SOURCEDIR=source
set BUILDDIR=build
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
echo.installed, then set the SPHINXBUILD environment variable to point
echo.to the full path of the 'sphinx-build' executable. Alternatively you
echo.may add the Sphinx directory to PATH.
echo.
echo.If you don't have Sphinx installed, grab it from
echo.https://www.sphinx-doc.org/
exit /b 1
)
if "%1" == "" goto help
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
goto end
:help
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
:end
popd

View file

View file

@ -1,8 +0,0 @@
API
===
.. autosummary::
:toctree: api
:recursive:
pyskyline

View file

@ -1,12 +0,0 @@
pyskyline.digital\_map
======================
.. automodule:: pyskyline.digital_map
.. rubric:: Classes
.. autosummary::
DigitalMap

View file

@ -1,16 +0,0 @@
pyskyline.raycast
=================
.. automodule:: pyskyline.raycast
.. rubric:: Functions
.. autosummary::
bresenham_line
compute_fov
compute_skyline
get_highest_angle
mp_compute_skyline

View file

@ -1,15 +0,0 @@
pyskyline
=========
.. automodule:: pyskyline
.. rubric:: Modules
.. autosummary::
:toctree:
:recursive:
digital_map
raycast
terrain

View file

@ -1,12 +0,0 @@
pyskyline.terrain
=================
.. automodule:: pyskyline.terrain
.. rubric:: Classes
.. autosummary::
Terrain

View file

@ -1,35 +0,0 @@
import os
import sys
sys.path.insert(0, os.path.abspath('..'))
# Configuration file for the Sphinx documentation builder.
#
# For the full list of built-in configuration values, see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Project information -----------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information
project = 'pyskyline'
copyright = '2024, Alexandre Foucher'
author = 'Alexandre Foucher'
release = 'alpha0.1'
# -- General configuration ---------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
extensions = [
'sphinx.ext.duration',
'sphinx.ext.doctest',
'sphinx.ext.autodoc',
'sphinx.ext.autosummary',
]
templates_path = ['_templates']
exclude_patterns = []
# -- Options for HTML output -------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
html_theme = 'alabaster'
html_static_path = ['_static']

View file

@ -1,18 +0,0 @@
.. pyskyline documentation master file, created by
sphinx-quickstart on Tue Aug 27 09:34:56 2024.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
pyskyline documentation
=======================
Add your content using ``reStructuredText`` syntax. See the
`reStructuredText <https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html>`_
documentation for details.
.. toctree::
:maxdepth: 2
:caption: Contents:
api

View file

@ -1,74 +0,0 @@
#!/usr/bin/env python3
import math
import cv2 as cv
import pyskyline
import numpy as np
import argparse
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
def show_result(terrain, skyline, coord, scoremap):
fig = plt.figure()
gs = fig.add_gridspec(2,3)
fig.suptitle("Mosse correlation", fontsize=16)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
ax3 = fig.add_subplot(gs[0, 2])
ax4 = fig.add_subplot(gs[1, :])
im1 = ax1.imshow(scoremap, cmap='hot', interpolation='nearest')
ax1.set_title('Correlation map')
cbar1 = ax1.figure.colorbar(im1)
cbar1.ax.set_ylabel("Correlation score", rotation=-90, va="bottom")
rgb = cv.cvtColor(terrain.rgb(), cv.COLOR_BGR2RGB)
rgb = cv.circle(rgb, coord, 2, (255,0,0), -1)
ax2.imshow(rgb)
ax2.set_title('Colored terrain')
im2 = ax3.imshow((terrain.grayscale().astype(float) - 135) * (40.0/120.0))
ax3.set_title('DEM')
cbar = ax1.figure.colorbar(im2)
cbar.ax.set_ylabel("Altitude", rotation=-90, va="bottom")
x = np.linspace(-180,180,skyline.shape[0])
ax4.plot(x,skyline,label="Agent vision")
ax4.plot(x,terrain.get_skyline(coord[0], coord[1]), label="DEM data")
ax4.legend()
plt.show()
def eval_score(correlation_map, coord, scale, alpha=10):
alpha = alpha / scale
score = 0
h,w = correlation_map.shape
x,y = coord
for j in range(h):
for i in range(w):
dist = math.sqrt((x-i)**2+(y-j)**2)
score += correlation_map[j,i] * 1 #(math.pow(0.5,math.pow(dist/alpha,2)-1)-1)
return score
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--size", help="Terrain size (default=128)", type=int, default=128)
parser.add_argument("--seed", help="Terrain seed (If not set seed is random)", type=int)
args = parser.parse_args()
seed = np.random.randint(0,1024) if args.seed is None else args.seed
terrain = pyskyline.Terrain.generate(size=args.size,seed=seed,scale=8.0,max_altitude=40.0)
terrain.precompute_all_skylines()
x, y = terrain.get_random_water_coordinate()
skyline = terrain.get_skyline(x, y)
angle = np.random.randint(1,40)
skyline = np.roll(skyline, angle)
correlation_map = pyskyline.MosseCorrelation.process(terrain, skyline)
score = eval_score(correlation_map,(x,y), terrain._scale,100)
score = score / (2 * terrain.water_tile_count()) + 0.5
print(f"{score:0.2f} with angle of {angle}")
show_result(terrain, skyline, (x,y), correlation_map)

View file

@ -1,44 +0,0 @@
import pyskyline
import random
terrain = pyskyline.Terrain.generate(
seed=10,
size=512,
scale=4.0,
max_altitude=40.0
)
terrain.precompute_all_skylines()
while True:
x = random.randint(0, 511)
y = random.randint(0, 511)
if terrain.is_water(x,y): break
skyline = terrain.get_skyline(x, y)
print(f"({x}, {y})")
import matplotlib.pyplot as plt
import numpy as np
plt.figure()
plt.grid(False)
plt.ylim(0,20)
plt.plot(np.arange(0,360,360/256), np.rad2deg(skyline))
plt.title('Skyline')
import cv2 as cv
cv.imwrite('elevation.jpg', terrain.grayscale())
cv.imwrite('color.jpg', terrain.rgb())
skyline = np.roll(skyline, 21) # Add heading error
# skyline += np.random.normal(0,0.01, 256) # Add random noise
res = pyskyline.MosseCorrelation.process(terrain, skyline)
plt.figure()
plt.imshow(res, cmap='hot', interpolation='nearest')
plt.title('Scoremap')
plt.show()

View file

@ -1,130 +0,0 @@
import numpy as np
import scipy.signal as signal
from scipy.fftpack import fft, ifft
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
def gaussian_filter1d(size,sigma):
filter_range = np.linspace(-int(size/2),int(size/2),size)
gaussian_filter = [1 / (sigma * np.sqrt(2*np.pi)) * np.exp(-x**2/(2*sigma**2)) for x in filter_range]
return gaussian_filter
def generate_signal(N:int) -> np.ndarray:
x = np.arange(1, N)
y = np.zeros((N))
for i in range(len(x)):
y[i] = np.random.normal(scale=1) + (y[i-1] if i > 1 else 0)
return np.convolve(y,gaussian_filter1d(N,1),'same')
class UI:
def __init__(self) -> None:
self._size_F = 256
self._size_H = 256
self._sigma = 1.1
self._seed = 0
self._shift = 0
self._fig, self._axs = self.init_ui()
self.update()
def init_ui(self) -> None:
fig, (ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8) = plt.subplots(8, 1, gridspec_kw={'height_ratios':[4,4,4,1,1,1,1,1]})
ax1.set_title('Terrain')
self.plt_f, = ax1.plot([])
self.plt_h, = ax1.plot([])
ax2.set_title('MOSSE response signal')
ax2.set_ylim([0, 1.2])
self.line_r = ax2.axvline()
self.plt_r, = ax2.plot([])
self.plt_r2, = ax2.plot([])
ax3.set_title('Gaussian')
self.plt_g, = ax3.plot([])
ax1.set_xlim([-180,180])
ax2.set_xlim([-180,180])
ax3.set_xlim([-180,180])
self._slider1 = Slider(ax4, 'sigma', 0.1, 5, valinit=self._sigma)
self._slider2 = Slider(ax5, 'shift', -180, 180, valinit=self._shift, valstep=1)
self._slider3 = Slider(ax6, 'seed', 0, 50, valinit=self._seed, valstep=1)
self._slider4 = Slider(ax7, 'Size f', 64, 1024, valinit=self._size_F, valstep=8)
self._slider5 = Slider(ax8, 'Size h', 64, 1024, valinit=self._size_H, valstep=8)
self._slider1.on_changed(self.update_sigma)
self._slider2.on_changed(self.update_shift)
self._slider3.on_changed(self.update_seed)
self._slider4.on_changed(self.update_size_f)
self._slider5.on_changed(self.update_size_h)
fig.subplots_adjust(hspace=0.75)
return fig, [ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8]
def update(self):
np.random.seed(self._seed)
g = signal.windows.gaussian(self._size_F, std=self._sigma,sym=True)
f = generate_signal(self._size_F) * signal.windows.hamming(self._size_F)
h = np.zeros((self._size_F))
s = self._size_F//2-self._size_H//2
h[s:s+self._size_H] = (f[s:s+self._size_H] + np.random.normal(0,0.5, self._size_H)) * signal.windows.hamming(self._size_H)
h = np.roll(h,int(self._shift/180*self._size_F//2))
F = fft(f)
G = fft(g)
H = fft(h)
R = H*G/F
r = ifft(R)
s = np.argmax(abs(r))
r2 = np.copy(r)
r2[s-5:s+5] = 0
x = np.linspace(-180,180,self._size_F)
self.plt_g.set_data(x, g)
self.plt_r.set_data(x,abs(r))
self.plt_r2.set_data(x,abs(r2))
self.plt_f.set_data(x,f)
self.plt_h.set_data(x,h)
self._axs[0].set_ylim([min(np.min(h),np.min(f))-1, max(np.max(h),np.max(f))+1])
self._axs[1].set_ylim([0, np.max(r)+0.2])
self._axs[2].set_ylim([0, np.max(g)*1.1])
self.line_r.set_xdata([round((np.argmax(abs(r))/self._size_F-0.5)*360)])
self._fig.canvas.draw_idle()
def update_sigma(self, val):
self._sigma = val
self.update()
def update_size_f(self, val):
if val < self._size_H:
self._slider4.eventson = False
self._slider4.set_val(max(val, self._size_H))
self._slider4.eventson = True
self._size_F = max(val, self._size_H)
self.update()
def update_size_h(self, val):
if val > self._size_F:
self._slider5.eventson = False
self._slider5.set_val(min(val, self._size_F))
self._slider5.eventson = True
self._size_H = min(val, self._size_F)
self.update()
def update_seed(self, val):
self._seed = val
self.update()
def update_shift(self, val):
self._shift = val
self.update()
def show(self) -> None:
plt.show()
if __name__ == '__main__':
ui = UI()
ui.show()

BIN
images/fov.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

802
images/heatmap.svg Normal file

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 98 KiB

4
pyproject.toml Executable file → Normal file
View file

@ -3,9 +3,9 @@ requires = ["setuptools>=61.0"]
build-backend = "setuptools.build_meta" build-backend = "setuptools.build_meta"
[project] [project]
name = "pyskyline" name = "pyskyline"
version = "0.1" version = "0.0.1"
authors = [ authors = [
{ name="Alexandre FOUCHER", email="alexandre.foucher@univ-ubs.fr" }, { name="Alexandre FOUCHER", email="foucher@univ-ubs.fr" },
] ]
description = "A small example package" description = "A small example package"
readme = "README.md" readme = "README.md"

View file

@ -1,4 +1,4 @@
noise==1.2.2 perlin-numpy @ git+https://github.com/pvigier/perlin-numpy
scipy==1.14.1 numpy
matplotlib scipy
pyqt5 opencv-python

BIN
resources/mask.jpg Executable file

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

View file

@ -1,6 +0,0 @@
# Build files
**/lib
**/CMakeFiles
CMakeCache.txt
cmake_install.cmake
Makefile

View file

@ -1,30 +0,0 @@
# Specify the minimum version.
cmake_minimum_required(VERSION 3.9)
# Specify the project info.
project(convert VERSION 1.0.0 LANGUAGES C CXX)
find_package(OpenMP REQUIRED)
if (OPENMP_FOUND)
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_EXE_LINKER_FLAGS}")
endif()
set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/lib)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
# set(CMAKE_CXX_FLAGS_RELEASE "-Ofast")
file(GLOB_RECURSE SRC_FILES
${PROJECT_SOURCE_DIR}/src/*.cpp
${PROJECT_SOURCE_DIR}/src/*.h
)
include_directories(include)
# Declare the library target.
add_library(${PROJECT_NAME} SHARED ${SRC_FILES})
target_link_libraries(${PROJECT_NAME} fftw3)

View file

@ -1 +0,0 @@
sudo apt-get install fftw3 fftw3-dev pkg-config

View file

@ -1,21 +0,0 @@
# ifndef MOSSE_CORRELATION_HPP
# define MOSSE_CORRELATION_HPP
#include <cstddef>
#include <fftw3.h>
#include "Terrain.hpp"
namespace skyline
{
// fftw_complex *skyline::fft(float *array, std::size_t N);
fftw_complex *fft(float *array, std::size_t N);
fftw_complex *ifft(fftw_complex *in, std::size_t N);
float *abs(fftw_complex *in, std::size_t N);
void multiply_complex(fftw_complex *a, fftw_complex *b, std::size_t N);
void divide_complex(fftw_complex *a, fftw_complex *b, std::size_t N);
float *gaussian(std::size_t N, float std);
float *process(skyline::Terrain *terrain, float *f);
}
# endif /* MOSSE_CORRELATION_HPP */

View file

@ -1,35 +0,0 @@
# ifndef TERRAIN_HPP
# define TERRAIN_HPP
# include <cstdint>
# include <map>
namespace skyline
{
class Terrain
{
private:
std::size_t m_size;
std::uint8_t *m_dem;
std::uint8_t m_ocean_height;
float m_altitude_ratio;
float m_scale;
std::uint16_t m_raycount;
float m_raydist;
float m_raystep;
std::map<std::uint32_t, float*> m_skylines;
float *compute_skyline(std::int32_t x, std::int32_t y);
public:
Terrain(std::size_t size, std::uint8_t *dem, std::uint8_t ocena_height, float max_altitude, float scale, std::uint16_t raycount, float raydist);
~Terrain();
std::size_t get_size();
float *get_skyline(std::uint32_t x, std::uint32_t y);
bool is_water(std::int32_t x, std::int32_t y);
void precompute_all_skylines();
};
}
#endif /* TERRAIN_HPP */

View file

@ -1,119 +0,0 @@
#include "MosseCorrelation.hpp"
#include <cmath>
#define GAUSSIAN_STD 2.25
fftw_complex *skyline::fft(float *array, std::size_t N)
{
fftw_complex *in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);
fftw_complex *out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);
fftw_plan p = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
for(std::size_t i=0; i < N; i++) {
in[i][0] = array[i];
}
fftw_execute(p);
fftw_destroy_plan(p);
fftw_free(in);
return out;
}
fftw_complex *skyline::ifft(fftw_complex *in, std::size_t N)
{
fftw_complex *out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);
fftw_plan p = fftw_plan_dft_1d(N, in, out, FFTW_BACKWARD, FFTW_ESTIMATE);
fftw_execute(p);
fftw_destroy_plan(p);
fftw_free(in);
return out;
}
float *skyline::abs(fftw_complex *in, std::size_t N)
{
float *array = new float[N];
for(std::size_t i=0; i < N; i++) {
array[i] = std::sqrt( in[i][0] * in[i][0] + in[i][1] * in[i][1]);
}
return array;
}
void skyline::multiply_complex(fftw_complex *a, fftw_complex *b, std::size_t N)
{
double r,i;
for(std::size_t i=0; i < N; i++) {
r = a[i][0] * b[i][0] - a[i][1] * b[i][1];
i = a[i][0] * b[i][1] + b[i][0] * a[i][1];
a[i][0] = r;
a[i][1] = i;
}
}
void skyline::divide_complex(fftw_complex *a, fftw_complex *b, std::size_t N)
{
double r,i, denum;
for(std::size_t i=0; i < N; i++) {
denum = b[i][0] * b[i][0] + b[i][1] * b[i][1];
r = (a[i][0] * b[i][0] + a[i][1] * b[i][1]) / (denum);
i = (a[i][1] * b[i][0] - a[i][0] * b[i][1]) / (denum);
a[i][0] = r;
a[i][1] = i;
}
}
float *skyline::gaussian(std::size_t N, float std)
{
float *array = new float[N];
float half_m = (N - 1.0) / 2.0;
float sig2 = 2 * std * std;
for(std::size_t i=0; i < N; i++) {
array[i] = std::exp(-std::pow( (i-half_m), 2) / sig2);
}
return array;
};
float *skyline::process(skyline::Terrain *terrain, float *f) {
size_t N = terrain->get_size();
float *g = gaussian(N, GAUSSIAN_STD);
fftw_complex *G = fft(g, N);
fftw_complex *F = fft(f, N);
float *scoremap = new float[N*N];
#pragma omp parallel for collapse(2)
for(size_t x=0; x < N; x++)
{
for(size_t y=0; y < N; y++)
{
if(terrain->is_water(x, y))
{
fftw_complex *H = fft(terrain->get_skyline(x, y), N);
multiply_complex(H, G, N);
divide_complex(H, F, N);
H = ifft(H, N);
float *r = skyline::abs(H, N);
// TODO compute score
fftw_free(H);
free(r);
} else {
scoremap[y * N + x] = 0;
}
}
}
free(g);
fftw_free(G);
fftw_free(F);
return scoremap;
};

View file

@ -1,141 +0,0 @@
# include "Terrain.hpp"
# include <math.h>
# include <iostream>
# include <vector>
// ============================================================================
// P R I V A T E
// ============================================================================
float *skyline::Terrain::compute_skyline(std::int32_t x, std::int32_t y)
{
float *skyline = new float[this->m_raycount];
for(int i=0; i < this->m_raycount; i++){
int x0 = x;
int y0 = y;
int x1 = x0 + cos(i * this->m_raystep) * this->m_raydist;
int y1 = y0 + sin(i * this->m_raystep) * this->m_raydist;
int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1;
int dy = -abs(y1-y0), sy = y0<y1 ? 1 : -1;
int err = dx+dy, e2;
std::uint8_t height = 0;
float max_angle = 0;
float dist, angle;
while( (x0 != x1 or y0 != y1) and (x0 < this->m_size && x0 >= 0 && y0 < this->m_size && y0 >= 0) ){
if (this->m_dem[y0 * this->m_size + x0] > height) {
height = this->m_dem[y0 * this->m_size + x0];
dist = sqrt(pow(x0-x,2)+pow(y0-y,2)) * this->m_scale;
angle = atan((height-this->m_ocean_height)*this->m_altitude_ratio/dist);
if(angle > max_angle){
max_angle = angle;
}
}
e2 = 2*err;
if (e2 >= dy) { err += dy; x0 += sx; } /* e_xy+e_x > 0 */
if (e2 <= dx) { err += dx; y0 += sy; } /* e_xy+e_y < 0 */
}
skyline[i] = max_angle;
}
return skyline;
}
// ============================================================================
// P U B L I C
// ============================================================================
skyline::Terrain::Terrain(std::size_t size, std::uint8_t *dem, std::uint8_t ocean_height,
float max_altitude, float scale, std::uint16_t raycount, float raydist)
{
this->m_size = size;
this->m_dem = dem;
this->m_ocean_height = ocean_height;
this->m_altitude_ratio = max_altitude / 255.0;
this->m_scale = scale;
this->m_raycount = raycount;
this->m_raydist = raydist / scale;
this->m_raystep = 2 * M_PI / (raycount - 1);
}
skyline::Terrain::~Terrain()
{
}
std::size_t skyline::Terrain::get_size()
{
return this->m_size;
}
bool skyline::Terrain::is_water(int32_t x, int32_t y)
{
return this->m_dem[y * this->m_size + x] <= this->m_ocean_height;
}
float *skyline::Terrain::get_skyline(std::uint32_t x, std::uint32_t y)
{
std::uint64_t id = (y << 16) | x;
// Check if skyline is already computed
if (this->is_water(x,y))
{
if (this->m_skylines.find(id) == this->m_skylines.end()) {
float *skyline = this->compute_skyline(x, y);
this->m_skylines.insert({id, skyline});
return skyline;
} else {
return this->m_skylines.at(id);
}
}
return nullptr;
}
void skyline::Terrain::precompute_all_skylines()
{
std::vector<std::uint32_t> sharedList;
#pragma omp parallel for collapse(2)
for( int x=0; x<this->m_size; x++)
{
for( int y=0; y<this->m_size; y++)
{
if (this->is_water(x,y))
{
#pragma omp critical
sharedList.push_back(y << 16 | x);
}
}
}
#pragma omp parallel for
for( int i=0; i<sharedList.size(); i++)
{
std::uint32_t id = sharedList.at(i);
std::uint16_t y = (0xFFFF0000 & id) >> 16;
std::uint16_t x = (0x0000FFFF & id);
float *skyline = this->compute_skyline(x, y);
#pragma omp critical
this->m_skylines.insert({id, skyline});
}
}
extern "C" {
skyline::Terrain *Terrain_new(std::uint32_t size, std::uint8_t *dem, std::uint8_t ocean_height,
float max_altitude, float scale, std::uint16_t raycount, float raydist)
{
return new skyline::Terrain(size, dem, ocean_height, max_altitude, scale, raycount, raydist);
}
void Terrain_free(skyline::Terrain *terrain){delete terrain;}
float *Terrain_get_skyline(skyline::Terrain *terrain, std::int32_t x, std::int32_t y){ return terrain->get_skyline(x, y); }
void Terrain_precompute_all_skylines(skyline::Terrain *terrain){ terrain->precompute_all_skylines(); }
bool Terrain_is_water(skyline::Terrain *terrain, std::int32_t x, std::int32_t y){ return terrain->is_water(x, y); }
};

7
src/pyskyline/__init__.py Executable file → Normal file
View file

@ -1,5 +1,4 @@
DEFAULT_RAYCOUNT = 256 from .digital_map import DigitalMap
DEFAULT_RAYDIST = 1000.0 from .raycast import bresenham_line, get_highest_angle
from .terrain import Terrain from .terrain import Terrain
from .mosse_correlation import MosseCorrelation from .localization.mosse_correlation import MosseCorrelation

View file

@ -0,0 +1,77 @@
import os
import numpy as np
import cv2 as cv
import perlin_numpy as perlin
class DigitalMap:
DEFAULT_MASK = os.path.dirname(__file__) + '/../../resources/mask.jpg'
DEFAULT_LAYERS = {
-1 : (169, 166, 97), # Water
18 : (175, 214, 238), # Sand
36 : ( 34, 139, 34), # Grass
82 : ( 20, 100, 20) # Tree
}
def __init__(self, seed:int, size:int, height:float, scale:float) -> None:
self.height = height
self.scale = scale
self.seed = seed
self.size = size
self.elevation : 'np.ndarray|None' = None
self.color : 'np.ndarray|None' = None
def generate_elevation_map(self, mask_path:str) -> None:
""" Generate grayscale elevation map from 2D perlin noise
Args:
mask_path (str): Terrain grayscale mask path.
"""
np.random.seed(self.seed)
perlin_noise = perlin.generate_fractal_noise_2d(
shape = (512,)*2,
res = (2**3,)*2,
octaves = 5
)
# Set noise in [0;1]
p_min = np.min(perlin_noise)
p_max = np.max(perlin_noise)
perlin_noise = (perlin_noise - p_min) / (p_max - p_min)
if self.size != 512:
perlin_noise = cv.resize(perlin_noise, (self.size,)*2, interpolation=cv.INTER_CUBIC)
# Open and rescale mask
mask = cv.imread(mask_path, cv.IMREAD_GRAYSCALE)
mask = cv.resize(mask, (self.size,)*2, interpolation=cv.INTER_CUBIC)
OCEAN_HEIGHT = 30
elevation_map = perlin_noise * mask
elevation_map = np.clip(elevation_map, OCEAN_HEIGHT, 255)
elevation_map = (elevation_map-OCEAN_HEIGHT) / (255-OCEAN_HEIGHT) * 255
self.elevation = elevation_map.astype(dtype=np.uint8)
def generate_color_map(self, layers:'dict|None'=None) -> None:
""" Generate RGB colored map based on elevation map.
Args:
layers (dict): Layer dictionary where the key is the height and value the color in BGR.
"""
if layers is None:
layers = self.DEFAULT_LAYERS
color_map = np.full((self.size, self.size, 3), layers[-1], dtype=np.uint8)
for height, color in list(layers.items())[1:]:
mask = self.elevation > height
color_map[mask] = color
self.color = color_map
@staticmethod
def generate(seed:int, size:int, height:float, scale:float, mask_path:str=DEFAULT_MASK) -> 'DigitalMap':
dem = DigitalMap(seed, size, height, scale)
dem.generate_elevation_map(mask_path)
dem.generate_color_map()
return dem

View file

@ -0,0 +1,36 @@
import numpy as np
import cv2 as cv
from multiprocessing import Pool, cpu_count
from ..terrain import Terrain
class Localizator:
def __init__(self, terrain:Terrain, skyline:np.ndarray) -> None:
self.terrain = terrain
self.skyline = skyline
def _compute_score_mp(self, func:callable, args:any, print_progress:bool=True):
if print_progress:
import rich.progress as rp
progress_bar = rp.Progress(
*rp.Progress.get_default_columns(),
rp.TimeElapsedColumn(),
rp.MofNCompleteColumn()
)
task = progress_bar.add_task('Compute heatmap', total=len(args))
progress_bar.start()
score_map = (self.terrain.dem.elevation != 0).astype(np.float16) * -1
with Pool(processes=cpu_count()) as pool:
results = pool.imap(func, args)
for x, y, score in results:
score_map[y, x] = np.clip(score, -65000, 65000)
progress_bar.advance(task, 1)
if print_progress:
progress_bar.stop()
return score_map
def generate_scoremap(self):
raise NotImplementedError()

View file

@ -0,0 +1,35 @@
import numpy as np
import math
from scipy.fft import fft, ifft
from scipy.signal import gaussian
from ..terrain import Terrain
from .localizator import Localizator
def compute_score(args) -> float:
x, y, F, H, G = args
r = abs(ifft(H*G/F))
shift = np.argmax(r)
peak = r[shift]
r[shift-5:shift+5] = 0
score = peak/math.sqrt(np.sum(np.power(r,2)))
return x, y, score
class MosseCorrelation(Localizator):
def __init__(self, terrain: Terrain, skyline: np.ndarray) -> None:
super().__init__(terrain, skyline)
self.F = fft(skyline)
self.G = fft(gaussian(skyline.shape[0], std=2.25,sym=True))
def generate_scoremap(self, ray_dist:float=1000.0):
ray_count = self.F.shape[0]
args = [(
x,
y,
self.F,
fft(self.terrain.compute_skyline(x,y,ray_count,ray_dist)),
self.G
) for x in range(self.terrain.dem.size) for y in range(self.terrain.dem.size) if self.terrain.dem.elevation[y,x] == 0]
scoremap = self._compute_score_mp(compute_score, args)
scoremap = (scoremap-np.min(scoremap)) / (np.max(scoremap)-np.min(scoremap))
return scoremap

View file

@ -1,57 +0,0 @@
# This file is a application of 'GPS-level accurate camera localization with HorizonNet'
# (DOI: 10.1002/rob.21929)
from scipy.signal.windows import gaussian, hamming
from scipy.fft import fft, ifft
from multiprocessing import Pool, cpu_count
import numpy as np
import math
from . import Terrain
DEFAULT_GAUSSIAN_STD = 2.25
def _compute_score(args) -> float:
pos, F, H, G = args
r = abs(ifft(H*G/F))
shift = np.argmax(r)
peak = r[shift]
r[shift-5:shift+5] = 0
score = peak/math.sqrt(np.sum(np.power(r,2)))
return pos, score
class MosseCorrelation:
@staticmethod
def process(terrain:Terrain, skyline:np.ndarray, print_progress:bool=True):
n = terrain._raycount
window = hamming(n)
G = fft(gaussian(n, DEFAULT_GAUSSIAN_STD))
F = fft(skyline * window)
score_map = np.zeros((terrain._size, terrain._size), dtype=float)
args = [(
(x, y),
F,
fft(terrain.get_skyline(x,y) * window),
G
) for x in range(terrain._size) for y in range(terrain._size) if terrain.is_water(x,y)]
if print_progress:
import rich.progress as rp
progress_bar = rp.Progress(
*rp.Progress.get_default_columns(),
rp.TimeElapsedColumn(),
rp.MofNCompleteColumn()
)
task = progress_bar.add_task('Compute heatmap', total=len(args))
progress_bar.start()
with Pool(processes=cpu_count()) as pool:
results = pool.imap(_compute_score, args)
for (x, y), score in results:
score_map[y, x] = score
progress_bar.advance(task, 1)
if print_progress:
progress_bar.stop()
return score_map/np.max(score_map)

113
src/pyskyline/raycast.py Normal file
View file

@ -0,0 +1,113 @@
import numpy as np
import cv2 as cv
import math
from .digital_map import DigitalMap
def bresenham_line(x:int, y:int, dist:float, angle:float, limit:int) -> list:
"""Generate list of points of all grid cell where raycast hit.
see https://zingl.github.io/bresenham.html
Args:
x (int): X coordinate.
y (int): Y coordinate.
dist (float): Ray distance.
angle (float): Ray angle.
limit (int): coordinate limit.
Returns:
list: List of points [(x,y),...].
"""
points = []
x1 = int(x + np.cos(angle)* dist)
y1 = int(y + np.sin(angle)* dist)
dx = abs(x1 - x)
sx = 1 if x < x1 else -1
dy = -abs(y1 - y)
sy = 1 if y < y1 else -1
error = dx + dy
while (x != x1 or y != y1) and (0 <= x < limit and 0 <= y < limit):
points.append((x,y))
e2 = 2 * error
if e2 >= dy:
error += dy
x += sx
if e2 <= dx:
error += dx
y += sy
return points
def get_highest_angle(points:list, dem:DigitalMap) -> tuple:
m_height = 0
m_angle = 0
m_pos = points[-1]
for x, y in points[1:]:
height = dem.elevation[y,x]
if height > m_height:
m_height = height
dist = math.sqrt((points[0][0]-x)**2+(points[0][1]-y)**2) * dem.scale
angle = np.arctan((height * dem.height/255)/dist)
if angle >= m_angle:
m_angle = angle
m_pos = (x,y)
return np.rad2deg(m_angle), m_pos
def mp_compute_skyline(args:tuple) -> tuple:
dem, x, y, ray_count, ray_dist = args
return (x,y,compute_skyline(dem,x,y,ray_count,ray_dist))
def compute_skyline(dem:DigitalMap, x:int, y:int, ray_count:int, ray_dist:float) -> np.ndarray:
"""_summary_
Args:
x (int): X coordinate
y (int): Y coordinate
ray_count (int, optional): Raycast count. Defaults to 256.
ray_dist (float, optional): Raycast distance in meter. Defaults to 1000.0.
Returns:
np.ndarray: skyline array.
"""
ray_step = 2 * np.pi / (ray_count-1)
line = np.zeros((ray_count), dtype=np.float16)
for i in range(ray_count):
points = bresenham_line(x, y, ray_dist/dem.scale, ray_step*i, dem.size)
angle, _ = get_highest_angle(points, dem)
line[i] = angle
return line
def compute_fov(dem:DigitalMap, x:int, y:int, ray_count:int=256, ray_dist:float=1000.0) -> np.ndarray:
"""_summary_
Args:
x (int): X coordinate
y (int): Y coordinate
ray_count (int, optional): Raycast count. Defaults to 256.
ray_dist (float, optional): Raycast distance in meter. Defaults to 1000.0.
Returns:
np.ndarray: skyline array.
"""
ray_step = 2 * np.pi / (ray_count-1)
output = np.copy(dem.color)
output = cv.circle(output, (x,y), 3, (255,125,0),-1)
last_pos = None
for i in range(ray_count):
points = bresenham_line(x, y, ray_dist/dem.scale, ray_step*i, dem.size)
_, pos = get_highest_angle(points, dem)
if last_pos is not None:
output = cv.line(output,last_pos,pos,(0,0,255),2)
last_pos = pos
return output

183
src/pyskyline/terrain.py Executable file → Normal file
View file

@ -1,99 +1,110 @@
from multiprocessing import Pool, cpu_count
import numpy as np import numpy as np
import noise import cv2 as cv
import ctypes from .digital_map import DigitalMap
import random from . import raycast
from scipy import ndimage
from . import DEFAULT_RAYCOUNT, DEFAULT_RAYDIST class Terrain:
def __init__(self, dem:DigitalMap) -> None:
self.dem = dem
self.skylines = {}
NOISE_OCTAVES : int = 6 def compute_all_skylines(self, ray_count:int=256, ray_dist:float=1000.0, print_progress:bool=True):
NOISE_PERSISTENCE : float = 0.5 args = [(self.dem, x, y, ray_count, ray_dist) for x in range(self.dem.size) for y in range(self.dem.size) if self.dem.elevation[y,x] == 0]
NOISE_LACUNARITY : float = 2.0
COLOR_WATER : tuple = (169, 166, 97)
COLOR_SAND : tuple = (175, 214, 238)
COLOR_GRASS : tuple = ( 34, 139, 34)
COLOR_TREE : tuple = ( 20, 100, 20)
GROUND_LAYER : dict = {
'ocean' : 135,
'sand' : 150,
'grass' : 170
}
_TerrainHandle = ctypes.POINTER(ctypes.c_char) if print_progress:
_LIB = ctypes.cdll.LoadLibrary(f"{'/'.join(__file__.split('/')[:-2])}/cppskyline/lib/libconvert.so") import rich.progress as rp
_LIB.Terrain_new.argtypes = [ctypes.c_size_t, np.ctypeslib.ndpointer(dtype=np.uint8, ndim=2, flags='C_CONTIGUOUS'), ctypes.c_uint8, ctypes.c_float, ctypes.c_float, ctypes.c_uint16, ctypes.c_float ] progress_bar = rp.Progress(
_LIB.Terrain_new.restype = _TerrainHandle *rp.Progress.get_default_columns(),
_LIB.Terrain_free.argtypes = [_TerrainHandle] rp.TimeElapsedColumn(),
_LIB.Terrain_free.restype = None rp.MofNCompleteColumn()
_LIB.Terrain_get_skyline.argtypes = [_TerrainHandle, ctypes.c_uint32, ctypes.c_uint32] )
_LIB.Terrain_get_skyline.restype = ctypes.POINTER(ctypes.c_float) task = progress_bar.add_task('Compute skylines', total=len(args))
_LIB.Terrain_is_water.argtypes = [_TerrainHandle, ctypes.c_uint32, ctypes.c_uint32] progress_bar.start()
_LIB.Terrain_is_water.restype = ctypes.c_bool
_LIB.Terrain_precompute_all_skylines.argtypes = [_TerrainHandle]
_LIB.Terrain_precompute_all_skylines.restype = None
class Terrain(): with Pool(processes=cpu_count()) as pool:
def __init__(self, seed:int, size:int, scale:float, dem:np.ndarray, max_altitude:float, raycount:int, raydist:float) -> None: results = pool.imap(raycast.mp_compute_skyline, args)
self._seed = seed for x, y, skyline in results:
self._size = size self.skylines[(x,y)] = skyline
self._scale = scale progress_bar.advance(task, 1)
self._dem = dem
self._max_altitude = max_altitude
self._raycount = raycount
self.obj = _LIB.Terrain_new(size, dem, GROUND_LAYER['ocean'], max_altitude, scale, raycount, raydist)
def __del__(self): if print_progress:
_LIB.Terrain_free(self.obj) progress_bar.stop()
def compute_skyline(self, x:int, y:int, ray_count:int=256, ray_dist:float=1000.0):
"""_summary_
Args:
x (int): X coordinate
y (int): Y coordinate
ray_count (int, optional): Raycast count. Defaults to 256.
ray_dist (float, optional): Raycast distance in meter. Defaults to 1000.0.
Returns:
np.ndarray: skyline array.
"""
if (x,y) not in self.skylines:
self.skylines[(x,y)] = raycast.compute_skyline(self.dem, x, y, ray_count, ray_dist)
return self.skylines[(x,y)]
def compute_fov(self, x:int, y:int, ray_count:int=256, ray_dist:float=1000.0):
"""_summary_
Args:
x (int): X coordinate
y (int): Y coordinate
ray_count (int, optional): Raycast count. Defaults to 256.
ray_dist (float, optional): Raycast distance in meter. Defaults to 1000.0.
Returns:
np.ndarray: skyline array.
"""
return raycast.compute_fov(self.dem, x, y, ray_count, ray_dist)
def save(self, file:str):
np.savez_compressed(f'{file}.npz',
size = self.dem.size,
seed = self.dem.seed,
height = self.dem.height,
scale = self.dem.scale,
elevation_map = self.dem.elevation,
skylines = self.skylines
)
@staticmethod @staticmethod
def generate(seed:int, size:int, scale:float, max_altitude:float, raycount:int=DEFAULT_RAYCOUNT, raydist:float=DEFAULT_RAYDIST) -> 'Terrain': def load(file:str) -> 'Terrain':
dem = np.ndarray((size,size),np.uint8) if not file.endswith('.npz'):
file += ".npz"
save = np.load(file,allow_pickle=True)
dem = DigitalMap(
seed = save['seed'],
size = save['size'],
height = save['height'],
scale = save['scale']
)
dem.elevation = save.get('elevation_map')
dem.generate_color_map()
terrain = Terrain(dem)
terrain.skylines = save['skylines'].item()
for x in range(size): return terrain
for y in range(size):
dem[y,x] = (noise.snoise2(
x * scale / 1000 ,
y * scale / 1000 ,
NOISE_OCTAVES,
NOISE_PERSISTENCE,
NOISE_LACUNARITY,
base=seed
) + 1) * 127.5
return Terrain(seed, size, scale, dem, max_altitude, raycount, raydist) @staticmethod
def generate(seed:int=0x7B16, size:int=512, height:float=25.0, scale:float=1.0,
mask_path:str=DigitalMap.DEFAULT_MASK) -> 'Terrain':
""" Generate a procedural terrain using seed and mask, and precompute all horizon lines
def get_skyline(self, x:int, y:int) -> np.ndarray: Args:
skyline = _LIB.Terrain_get_skyline(self.obj, x, y) seed (int, optional): Random seed for the terrain generation. Defaults to 0x7B16.
return np.ctypeslib.as_array(skyline, shape=(self._raycount,)) size (int, optional): Size of the generated elevation map in pixel. Defaults to 512.
height (float, optional): Maximum altitude of the elevation map. Defaults to 40.0.
scale (float, optional): Scale of a pixel in meter. Defaults to 1.0.
mask_path (str, optional): Terrain mask path. Defaults to DEFAULT_MASK.
def is_water(self, x:int, y:int) -> bool: Returns:
return _LIB.Terrain_is_water(self.obj, x, y) Terrain: _description_
"""
dem = DigitalMap.generate(seed, size, height, scale, mask_path)
terrain = Terrain(dem)
def precompute_all_skylines(self) -> None: return terrain
import time
a = time.time()
_LIB.Terrain_precompute_all_skylines(self.obj)
print(f"{(time.time()-a):.1f}s")
def get_random_water_coordinate(self, coastal_range=100.0) -> tuple:
r = int(round(coastal_range/self._scale))
valid_location = self._dem <= GROUND_LAYER['ocean']
valid_location = ndimage.binary_erosion(valid_location, structure=np.ones((r,r)))
while True:
x = random.randint(0, self._size)
y = random.randint(0, self._size)
if valid_location[y,x] == 1:
return (x,y)
def rgb(self) -> np.ndarray:
rgb = np.full((self._size, self._size, 3), COLOR_WATER, dtype=np.uint8)
rgb[self._dem > GROUND_LAYER['ocean']] = COLOR_SAND
rgb[self._dem > GROUND_LAYER['sand']] = COLOR_GRASS
rgb[self._dem > GROUND_LAYER['grass']] = COLOR_TREE
return np.asarray(rgb)
def grayscale(self) -> np.ndarray:
return self._dem
def water_tile_count(self) -> int:
return (self._dem <= GROUND_LAYER['ocean']).sum()